Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Designing Non-Deterministic Finite Automata (Set 3)

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Prerequisite: Finite Automata Introduction 
In this article, we will see some designing of Non-Deterministic Finite Automata (NFA).
Problem-1: Construction of a minimal NFA accepting a set of strings over {a, b} in which each string of the language starts with ‘ab’. 
Explanation: The desired language will be like: 
 

L1 = {ab, abba, abaa, ...........}

Here as we can see that each string of the above language starts with ‘ab’ and end with any alphabet either ‘a’ or ‘b’. 
But the below language is not accepted by this NFA because none of the string of below language starts with ‘ab’. 
 

L2 = {ba, ba, babaaa..............}

The state transition diagram of the desired language will be like below: 
 

In the above NFA, the initial state ‘X’ on getting ‘a’ as the input it transits to a state ‘Y’. The state ‘Y’ on getting ‘b’ as the input it transits to a final state ‘Z’. The final state ‘Z’ on getting either ‘a’ or ‘b’ as the input it remains in the state of itself. 
 

Python Implementation:

 

Python3




def stateX(n):
    #if length of n become 0
    #then print not accepted
    if(len(n)==0):
        print("string not accepted")
         
    else:
        #if at zero index
        #'a' found call
        #stateY function   
        if (n[0]=='a'):
            stateY(n[1:])
         
        #if at zero index
        #'b' then print
        #not accepted
        elif (n[0]=='b'):
            print("string not accepted")  
        
def stateY(n):
    #if length of n become 0
    #then print not accepted
    if(len(n)==0):
        print("string not accepted")
         
    else
        #if at zero index
        #'a' then print
        #not accepted  
        if (n[0]=='a'):
            print("string not accepted")
             
        #if at zero index
        #'b' found call
        #stateZ function   
        elif (n[0]=='b'):
            stateZ(n[1:])
             
def stateZ(n):
    #if length of n become 0
    #then print accepted
    if(len(n)==0):
        print("string accepted")
         
    else
        #if at zero index
        #'b' found call
        #stateZ function   
        if (n[0]=='a'):
            stateZ(n[1:])
             
        #if at zero index
        #'b' found call
        #stateZ function   
        elif (n[0]=='b'):
            stateZ(n[1:])            
         
 
             
             
#take input
n=input()
 
#call stateA function
#to check the input
stateX(n)

Problem-2: Construction of a minimal NFA accepting a set of strings over {a, b} in which each string of the language is not starting with ‘ab’. 
Explanation: The desired language will be like: 
 

L1 = {ba, bba, bbaa, ...........}

Here as we can see that each string of the above language is not starting with ‘ab’ but can end with either ‘a’ or ‘b’. 
But the below language is not accepted by this NFA because some of the string of below language starts with ‘ab’. 
 

L2 = {ab, aba, ababaab..............}

The state transition diagram of the desired language will be like below: 
 

In the above NFA, the initial state ‘X’ on getting ‘b’ as the input it transits to a state ‘Y’. The state ‘Y’ on getting either ‘a’ or ‘b’ as the input it transits to a final state ‘Z’. The final state ‘Z’ on getting either ‘a’ or ‘b’ as the input it remains in the state of itself. 
 

Python Implementation:

 

Python3




def stateX(n):
    #if length of n become 0
    #then print not accepted
    if(len(n)==0):
        print("string not accepted")
         
    else:
        #if at zero index
        #'a' found then
        #print not accepted   
        if (n[0]=='a'):
            print("string not accepted")  
         
        #if at zero index
        #'b' then call
        #stateY function
        elif (n[0]=='b'):
            stateY(n[1:])
        
def stateY(n):
    #if length of n become 0
    #then print not accepted
    if(len(n)==0):
        print("string not accepted")
         
    else
        #if at zero index
        #'a' found call
        #stateZ function  
        if (n[0]=='a'):
            stateZ(n[1:])
             
        #if at zero index
        #'b' found call
        #stateZ function
        elif (n[0]=='b'):
            stateZ(n[1:])
             
def stateZ(n):
    #if length of n become 0
    #then print accepted
    if(len(n)==0):
        print("string accepted")
         
    else
        #if at zero index
        #'b' found call
        #stateZ function   
        if (n[0]=='a'):
            stateZ(n[1:])
             
        #if at zero index
        #'b' found call
        #stateZ function   
        elif (n[0]=='b'):
            stateZ(n[1:])            
         
 
             
             
#take input
n=input()
 
#call stateA function
#to check the input
stateX(n)


My Personal Notes arrow_drop_up
Last Updated : 18 Jan, 2022
Like Article
Save Article
Similar Reads