Deepest left leaf node in a binary tree

Given a Binary Tree, find the deepest leaf node that is left child of its parent. For example, consider the following tree. The deepest left leaf node is the node with value 9.

1
/   \
2     3
/      /  \
4      5    6
\     \
7     8
/       \
9         10

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

The idea is to recursively traverse the given binary tree and while traversing, maintain “level” which will store the current node’s level in the tree. If current node is left leaf, then check if its level is more than the level of deepest left leaf seen so far. If level is more then update the result. If current node is not leaf, then recursively find maximum depth in left and right subtrees, and return maximum of the two depths. Thanks to Coder011 for suggesting this approach.

C/C++

 // A C++ program to find the deepest left leaf in a given binary tree #include #include using namespace std;    struct Node {     int val;     struct Node *left, *right; };    Node *newNode(int data) {     Node *temp = new Node;     temp->val = data;     temp->left = temp->right =  NULL;     return temp; }    // A utility function to find deepest leaf node. // lvl:  level of current node. // maxlvl: pointer to the deepest left leaf node found so far // isLeft: A bool indicate that this node is left child of its parent // resPtr: Pointer to the result void deepestLeftLeafUtil(Node *root, int lvl, int *maxlvl,                          bool isLeft, Node **resPtr) {     // Base case     if (root == NULL)         return;        // Update result if this node is left leaf and its level is more     // than the maxl level of the current result     if (isLeft && !root->left && !root->right && lvl > *maxlvl)     {         *resPtr = root;         *maxlvl = lvl;         return;     }        // Recur for left and right subtrees     deepestLeftLeafUtil(root->left, lvl+1, maxlvl, true, resPtr);     deepestLeftLeafUtil(root->right, lvl+1, maxlvl, false, resPtr); }    // A wrapper over deepestLeftLeafUtil(). Node* deepestLeftLeaf(Node *root) {     int maxlevel = 0;     Node *result = NULL;     deepestLeftLeafUtil(root, 0, &maxlevel, false, &result);     return result; }    // Driver program to test above function int main() {     Node* root = newNode(1);     root->left = newNode(2);     root->right = newNode(3);     root->left->left = newNode(4);     root->right->left = newNode(5);     root->right->right = newNode(6);     root->right->left->right = newNode(7);     root->right->right->right = newNode(8);     root->right->left->right->left = newNode(9);     root->right->right->right->right = newNode(10);        Node *result = deepestLeftLeaf(root);     if (result)         cout << "The deepest left child is " << result->val;     else         cout << "There is no left leaf in the given tree";        return 0; }

Java

 // A Java program to find // the deepest left leaf // in a binary tree    // A Binary Tree node class Node {     int data;     Node left, right;        // Constructor     public Node(int data)     {         this.data = data;         left = right = null;     } }    // Class to evaluate pass // by reference  class Level  {     // maxlevel: gives the     // value of level of     // maximum left leaf     int maxlevel = 0; }    class BinaryTree  {     Node root;            // Node to store resultant     // node after left traversal     Node result;        // A utility function to     // find deepest leaf node.     // lvl: level of current node.     // isLeft: A bool indicate     // that this node is left child     void deepestLeftLeafUtil(Node node,                               int lvl,                               Level level,                              boolean isLeft)      {         // Base case         if (node == null)              return;            // Update result if this node         // is left leaf and its level         // is more than the maxl level         // of the current result         if (isLeft != false &&             node.left == null &&             node.right == null &&             lvl > level.maxlevel)         {             result = node;             level.maxlevel = lvl;         }            // Recur for left and right subtrees         deepestLeftLeafUtil(node.left, lvl + 1,                             level, true);         deepestLeftLeafUtil(node.right, lvl + 1,                             level, false);     }        // A wrapper over deepestLeftLeafUtil().     void deepestLeftLeaf(Node node)      {         Level level = new Level();         deepestLeftLeafUtil(node, 0, level, false);     }            // Driver program to test above functions     public static void main(String[] args)      {         BinaryTree tree = new BinaryTree();         tree.root = new Node(1);         tree.root.left = new Node(2);         tree.root.right = new Node(3);         tree.root.left.left = new Node(4);         tree.root.right.left = new Node(5);         tree.root.right.right = new Node(6);         tree.root.right.left.right = new Node(7);         tree.root.right.right.right = new Node(8);         tree.root.right.left.right.left = new Node(9);         tree.root.right.right.right.right = new Node(10);            tree.deepestLeftLeaf(tree.root);         if (tree.result != null)             System.out.println("The deepest left child"+                                " is " + tree.result.data);         else             System.out.println("There is no left leaf in"+                                " the given tree");     } }    // This code has been contributed by Mayank Jaiswal(mayank_24)

Python

 # Python program to find the deepest left leaf in a given # Binary tree    # A binary tree node class Node:            # Constructor to create a new node     def __init__(self, val):         self.val = val          self.left = None         self.right = None    # A utility function to find deepest leaf node. # lvl:  level of current node. # maxlvl: pointer to the deepest left leaf node found so far # isLeft: A bool indicate that this node is left child # of its parent # resPtr: Pointer to the result def deepestLeftLeafUtil(root, lvl, maxlvl, isLeft):            # Base CAse     if root is None:         return        # Update result if this node is left leaf and its      # level is more than the max level of the current result     if(isLeft is True):         if (root.left == None and root.right == None):             if lvl > maxlvl :                  deepestLeftLeafUtil.resPtr = root                  maxlvl = lvl                  return        # Recur for left and right subtrees     deepestLeftLeafUtil(root.left, lvl+1, maxlvl, True)     deepestLeftLeafUtil(root.right, lvl+1, maxlvl, False)    # A wrapper for left and right subtree def deepestLeftLeaf(root):     maxlvl =      deepestLeftLeafUtil.resPtr = None     deepestLeftLeafUtil(root, 0, maxlvl, False)     return deepestLeftLeafUtil.resPtr       # Driver program to test above function root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.right.left = Node(5) root.right.right = Node(6) root.right.left.right = Node(7) root.right.right.right = Node(8) root.right.left.right.left = Node(9) root.right.right.right.right= Node(10)    result = deepestLeftLeaf(root)     if result is None:     print "There is not left leaf in the given tree" else:     print "The deepst left child is", result.val    # This code is contributed by Nikhil Kumar Singh(nickzuck_007)

C#

 using System;    // A C# program to find  // the deepest left leaf  // in a binary tree     // A Binary Tree node  public class Node {     public int data;     public Node left, right;        // Constructor      public Node(int data)     {         this.data = data;         left = right = null;     } }    // Class to evaluate pass  // by reference  public class Level {     // maxlevel: gives the      // value of level of      // maximum left leaf      public int maxlevel = 0; }    public class BinaryTree {     public Node root;        // Node to store resultant      // node after left traversal      public Node result;        // A utility function to      // find deepest leaf node.      // lvl: level of current node.      // isLeft: A bool indicate      // that this node is left child      public virtual void deepestLeftLeafUtil(Node node, int lvl,                                          Level level, bool isLeft)     {         // Base case          if (node == null)         {             return;         }            // Update result if this node          // is left leaf and its level          // is more than the maxl level          // of the current result          if (isLeft != false && node.left == null && node.right == null                             && lvl > level.maxlevel)         {             result = node;             level.maxlevel = lvl;         }            // Recur for left and right subtrees          deepestLeftLeafUtil(node.left, lvl + 1, level, true);         deepestLeftLeafUtil(node.right, lvl + 1, level, false);     }        // A wrapper over deepestLeftLeafUtil().      public virtual void deepestLeftLeaf(Node node)     {         Level level = new Level();         deepestLeftLeafUtil(node, 0, level, false);     }        // Driver program to test above functions      public static void Main(string[] args)     {         BinaryTree tree = new BinaryTree();         tree.root = new Node(1);         tree.root.left = new Node(2);         tree.root.right = new Node(3);         tree.root.left.left = new Node(4);         tree.root.right.left = new Node(5);         tree.root.right.right = new Node(6);         tree.root.right.left.right = new Node(7);         tree.root.right.right.right = new Node(8);         tree.root.right.left.right.left = new Node(9);         tree.root.right.right.right.right = new Node(10);            tree.deepestLeftLeaf(tree.root);         if (tree.result != null)         {             Console.WriteLine("The deepest left child is " + tree.result.data);         }         else         {             Console.WriteLine("There is no left leaf in the given tree");         }     } }    // This code is contributed by Shrikant13

Output:

The deepest left child is 9

Time Complexity: The function does a simple traversal of the tree, so the complexity is O(n).

My Personal Notes arrow_drop_up

Improved By : shrikanth13

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.