Skip to content
Related Articles

Related Articles

Improve Article

Deepest left leaf node in a binary tree | iterative approach

  • Difficulty Level : Medium
  • Last Updated : 30 Jun, 2021

Given a Binary Tree, find the deepest leaf node that is left child of its parent. For example, consider the following tree. The deepest left leaf node is the node with value 9.
Examples: 
 

Input : 
       1
     /   \
    2     3
  /      /  \  
 4      5    6
        \     \
         7     8
        /       \
       9         10


Output : 9

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Recursive approach to this problem is discussed here
For iterative approach, idea is similar to Method 2 of level order traversal
The idea is to traverse the tree iteratively and whenever a left tree node is pushed to queue, check if it is leaf node, if it’s leaf node, then update the result. Since we go level by level, the last stored leaf node is deepest one, 
 

C++




// CPP program to find deepest left leaf
// node of binary tree
#include <bits/stdc++.h>
using namespace std;
 
// tree node
struct Node {
    int data;
    Node *left, *right;
};
 
// returns a new tree Node
Node* newNode(int data)
{
    Node* temp = new Node();
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
 
// return the deepest left leaf node
// of binary tree
Node* getDeepestLeftLeafNode(Node* root)
{
    if (!root)
        return NULL;
 
    // create a queue for level order traversal
    queue<Node*> q;
    q.push(root);
 
    Node* result = NULL;
 
    // traverse until the queue is empty
    while (!q.empty()) {
        Node* temp = q.front();
        q.pop();
 
          
        // Since we go level by level, the last
        // stored left leaf node is deepest one,
        if (temp->left) {
            q.push(temp->left);
            if (!temp->left->left && !temp->left->right)
                result = temp->left;
        }
         
        if (temp->right)
            q.push(temp->right);
    }
    return result;
}
 
// driver program
int main()
{
    // construct a tree
    Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->right->left = newNode(5);
    root->right->right = newNode(6);
    root->right->left->right = newNode(7);
    root->right->right->right = newNode(8);
    root->right->left->right->left = newNode(9);
    root->right->right->right->right = newNode(10);
 
    Node* result = getDeepestLeftLeafNode(root);
    if (result)
        cout << "Deepest Left Leaf Node :: "
             << result->data << endl;
    else
        cout << "No result, left leaf not found\n";
    return 0;
}

Java




// Java program to find deepest left leaf
// node of binary tree
import java.util.*;
 
class GFG
{
 
// tree node
static class Node
{
    int data;
    Node left, right;
};
 
// returns a new tree Node
static Node newNode(int data)
{
    Node temp = new Node();
    temp.data = data;
    temp.left = temp.right = null;
    return temp;
}
 
// return the deepest left leaf node
// of binary tree
static Node getDeepestLeftLeafNode(Node root)
{
    if (root == null)
        return null;
 
    // create a queue for level order traversal
    Queue<Node> q = new LinkedList<>();
    q.add(root);
 
    Node result = null;
 
    // traverse until the queue is empty
    while (!q.isEmpty())
    {
        Node temp = q.peek();
        q.remove();
 
        // Since we go level by level, the last
        // stored left leaf node is deepest one,
        if (temp.left != null)
        {
            q.add(temp.left);
            if (temp.left.left == null &&
                temp.left.right == null)
                result = temp.left;
        }
         
        if (temp.right != null)
            q.add(temp.right);
    }
    return result;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // construct a tree
    Node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.right.left = newNode(5);
    root.right.right = newNode(6);
    root.right.left.right = newNode(7);
    root.right.right.right = newNode(8);
    root.right.left.right.left = newNode(9);
    root.right.right.right.right = newNode(10);
 
    Node result = getDeepestLeftLeafNode(root);
    if (result != null)
        System.out.println("Deepest Left Leaf Node :: " +
                                            result.data);
    else
        System.out.println("No result, " +
                   "left leaf not found");
    }
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 program to find deepest
# left leaf Binary search Tree
 
_MIN = -2147483648
_MAX = 2147483648
 
# Helper function that allocates a new
# node with the given data and None
# left and right poers.                                    
class newnode:
 
    # Constructor to create a new node
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
# utility function to return deepest
# left leaf node
def getDeepestLeftLeafNode(root) :
 
    if (not root):
        return None
 
    # create a queue for level
    # order traversal
    q = []
    q.append(root)
 
    result = None
 
    # traverse until the queue is empty
    while (len(q)):
        temp = q[0]
        q.pop(0)
 
        if (temp.left):
            q.append(temp.left)
            if (not temp.left.left and
                not temp.left.right):
                result = temp.left
         
        # Since we go level by level,
        # the last stored right leaf
        # node is deepest one
        if (temp.right):
            q.append(temp.right)        
     
    return result
 
# Driver Code
if __name__ == '__main__':
     
    # create a binary tree
    root = newnode(1)
    root.left = newnode(2)
    root.right = newnode(3)
    root.left.Left = newnode(4)
    root.right.left = newnode(5)
    root.right.right = newnode(6)
    root.right.left.right = newnode(7)
    root.right.right.right = newnode(8)
    root.right.left.right.left = newnode(9)
    root.right.right.right.right = newnode(10)
 
    result = getDeepestLeftLeafNode(root)
    if result:
        print("Deepest Left Leaf Node ::",
                              result.data)
    else:
        print("No result, Left leaf not found")
         
# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)

C#




// C# program to find deepest left leaf
// node of binary tree
using System;
using System.Collections.Generic;
     
class GFG
{
 
// tree node
class Node
{
    public int data;
    public Node left, right;
};
 
// returns a new tree Node
static Node newNode(int data)
{
    Node temp = new Node();
    temp.data = data;
    temp.left = temp.right = null;
    return temp;
}
 
// return the deepest left leaf node
// of binary tree
static Node getDeepestLeftLeafNode(Node root)
{
    if (root == null)
        return null;
 
    // create a queue for level order traversal
    Queue<Node> q = new Queue<Node>();
    q.Enqueue(root);
 
    Node result = null;
 
    // traverse until the queue is empty
    while (q.Count != 0)
    {
        Node temp = q.Peek();
        q.Dequeue();
 
        // Since we go level by level, the last
        // stored left leaf node is deepest one,
        if (temp.left != null)
        {
            q.Enqueue(temp.left);
            if (temp.left.left == null &&
                temp.left.right == null)
                result = temp.left;
        }
        if (temp.right != null)
            q.Enqueue(temp.right);
    }
    return result;
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // construct a tree
    Node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.right.left = newNode(5);
    root.right.right = newNode(6);
    root.right.left.right = newNode(7);
    root.right.right.right = newNode(8);
    root.right.left.right.left = newNode(9);
    root.right.right.right.right = newNode(10);
 
    Node result = getDeepestLeftLeafNode(root);
    if (result != null)
        Console.WriteLine("Deepest Left Leaf Node :: " +
                                           result.data);
    else
        Console.WriteLine("No result, " +
                  "left leaf not found");
    }
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
    // JavaScript program to find deepest
    // left leaf node of binary tree
     
    class Node
    {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }
     
    // returns a new tree Node
    function newNode(data)
    {
        let temp = new Node(data);
        return temp;
    }
 
    // return the deepest left leaf node
    // of binary tree
    function getDeepestLeftLeafNode(root)
    {
        if (root == null)
            return null;
 
        // create a queue for level order traversal
        let q = [];
        q.push(root);
 
        let result = null;
 
        // traverse until the queue is empty
        while (q.length > 0)
        {
            let temp = q[0];
            q.shift();
 
            // Since we go level by level, the last
            // stored left leaf node is deepest one,
            if (temp.left != null)
            {
                q.push(temp.left);
                if (temp.left.left == null &&
                    temp.left.right == null)
                    result = temp.left;
            }
 
            if (temp.right != null)
                q.push(temp.right);
        }
        return result;
    }
     
    // construct a tree
    let root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.right.left = newNode(5);
    root.right.right = newNode(6);
    root.right.left.right = newNode(7);
    root.right.right.right = newNode(8);
    root.right.left.right.left = newNode(9);
    root.right.right.right.right = newNode(10);
   
    let result = getDeepestLeftLeafNode(root);
    if (result != null)
        document.write("Deepest Left Leaf Node :: " +
                                            result.data);
    else
        document.write("No result, " +
                   "left leaf not found");
 
</script>

Output:  

Deepest Left Leaf Node :: 9 




My Personal Notes arrow_drop_up
Recommended Articles
Page :