Deepest right leaf node in a binary tree | Iterative approach

Given a Binary Tree, find the deepest leaf node that is right child of its parent. For example, consider the following tree. The deepest right leaf node is the node with value 10.


Input : 
     /   \
    2     3
     \   /  \  
      4 5    6
         \    \
          7    8
         /      \
        9        10

Output : 10

The idea is similar to Method 2 of level order traversal

Traverse the tree level by level and while pushing right child to queue, check if it is leaf node, if it’s leaf node, then update the result and since we are traversing level by level, the last stored right leaf will be the deepest right leaf node.






// CPP program to find deepest right leaf
// node of binary tree
#include <bits/stdc++.h>
using namespace std;
// tree node
struct Node {
    int data;
    Node *left, *right;
// returns a new tree Node
Node* newNode(int data)
    Node* temp = new Node();
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
// return the deepest right leaf node
// of binary tree
Node* getDeepestRightLeafNode(Node* root)
    if (!root)
        return NULL;
    // create a queue for level order traversal
    queue<Node*> q;
    Node* result = NULL;
    // traverse until the queue is empty
    while (!q.empty()) {
        Node* temp = q.front();
        if (temp->left) {
        // Since we go level by level, the last 
        // stored right leaf node is deepest one 
        if (temp->right){
            if (!temp->right->left && !temp->right->right)
                result = temp->right;
    return result;
// driver program
int main()
    // construct a tree
    Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->right = newNode(4);
    root->right->left = newNode(5);
    root->right->right = newNode(6);
    root->right->left->right = newNode(7);
    root->right->right->right = newNode(8);
    root->right->left->right->left = newNode(9);
    root->right->right->right->right = newNode(10);
    Node* result = getDeepestRightLeafNode(root);
    if (result)
        cout << "Deepest Right Leaf Node :: "
             << result->data << endl;
        cout << "No result, right leaf not found\n";
    return 0;



# Python3 program to find closest
# value in Binary search Tree

_MIN = -2147483648
_MAX = 2147483648

# Helper function that allocates a new
# node with the given data and None
# left and right poers.
class newnode:

# Constructor to create a new node
def __init__(self, data): = data
self.left = None
self.right = None

# utility function to return level
# of given node
def getDeepestRightLeafNode(root) :

if (not root):
return None

# create a queue for level
# order traversal
q = []

result = None

# traverse until the queue is empty
while (len(q)):
temp = q[0]

if (temp.left):

# Since we go level by level, the last
# stored right leaf node is deepest one
if (temp.right):
if (not temp.right.left and
not temp.right.right):
result = temp.right

return result

# Driver Code
if __name__ == ‘__main__’:

# create a binary tree
root = newnode(1)
root.left = newnode(2)
root.right = newnode(3)
root.left.right = newnode(4)
root.right.left = newnode(5)
root.right.right = newnode(6)
root.right.left.right = newnode(7)
root.right.right.right = newnode(8)
root.right.left.right.left = newnode(9)
root.right.right.right.right = newnode(10)

result = getDeepestRightLeafNode(root)
if result:
print(“Deepest Right Leaf Node ::”,
print(“No result, right leaf not found”)

# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)


Deepest Right Leaf Node :: 10

Time Complexity : O(n)

Mandeep Singh

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using or mail your article to See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : SHUBHAMSINGH10

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at to report any issue with the above content.