C# Program for Matrix Chain Multiplication | DP-8

Given a sequence of matrices, find the most efficient way to multiply these matrices together. The problem is not actually to perform the multiplications, but merely to decide in which order to perform the multiplications.

We have many options to multiply a chain of matrices because matrix multiplication is associative. In other words, no matter how we parenthesize the product, the result will be the same. For example, if we had four matrices A, B, C, and D, we would have:

    (ABC)D = (AB)(CD) = A(BCD) = ....

However, the order in which we parenthesize the product affects the number of simple arithmetic operations needed to compute the product, or the efficiency. For example, suppose A is a 10 × 30 matrix, B is a 30 × 5 matrix, and C is a 5 × 60 matrix. Then,

    (AB)C = (10×30×5) + (10×5×60) = 1500 + 3000 = 4500 operations
    A(BC) = (30×5×60) + (10×30×60) = 9000 + 18000 = 27000 operations.

Clearly the first parenthesization requires less number of operations.

Given an array p[] which represents the chain of matrices such that the ith matrix Ai is of dimension p[i-1] x p[i]. We need to write a function MatrixChainOrder() that should return the minimum number of multiplications needed to multiply the chain.



  Input: p[] = {40, 20, 30, 10, 30}   
  Output: 26000  
  There are 4 matrices of dimensions 40x20, 20x30, 30x10 and 10x30.
  Let the input 4 matrices be A, B, C and D.  The minimum number of 
  multiplications are obtained by putting parenthesis in following way
  (A(BC))D --> 20*30*10 + 40*20*10 + 40*10*30

  Input: p[] = {10, 20, 30, 40, 30} 
  Output: 30000 
  There are 4 matrices of dimensions 10x20, 20x30, 30x40 and 40x30. 
  Let the input 4 matrices be A, B, C and D.  The minimum number of 
  multiplications are obtained by putting parenthesis in following way
  ((AB)C)D --> 10*20*30 + 10*30*40 + 10*40*30

  Input: p[] = {10, 20, 30}  
  Output: 6000  
  There are only two matrices of dimensions 10x20 and 20x30. So there 
  is only one way to multiply the matrices, cost of which is 10*20*30

Recommended: Please solve it on “PRACTICE ” first, before moving on to the solution.

Following is a recursive implementation that simply follows the above optimal substructure property.

C#

filter_none

edit
close

play_arrow

link
brightness_4
code

/* C# code for naive recursive implementation 
that simply follows the above optimal 
substructure property */
using System;
  
class GFG {
  
    // Matrix Ai has dimension p[i-1] x p[i]
    // for i = 1..n
    static int MatrixChainOrder(int[] p, int i, int j)
    {
  
        if (i == j)
            return 0;
  
        int min = int.MaxValue;
  
        // place parenthesis at different places
        // between first and last matrix, recursively
        // calculate count of multiplications for each
        // parenthesis placement and return the
        // minimum count
        for (int k = i; k < j; k++) {
            int count = MatrixChainOrder(p, i, k) + 
                        MatrixChainOrder(p, k + 1, j) + 
                        p[i - 1] * p[k] * p[j];
  
            if (count < min)
                min = count;
        }
  
        // Return minimum count
        return min;
    }
  
    // Driver program to test above function
    public static void Main()
    {
        int[] arr = new int[] { 1, 2, 3, 4, 3 };
        int n = arr.Length;
  
        Console.Write("Minimum number of multiplications is "
                      + MatrixChainOrder(arr, 1, n - 1));
    }
}
  
// This code is contributed by Sam007.

chevron_right


Output:

Minimum number of multiplications is 30

Dynamic Programming Solution

C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Dynamic Programming C# implementation of
// Matrix Chain Multiplication.
// See the Cormen book for details of the
// following algorithm
using System;
  
class GFG {
  
    // Matrix Ai has dimension p[i-1] x p[i]
    // for i = 1..n
    static int MatrixChainOrder(int[] p, int n)
    {
  
        /* For simplicity of the program, one 
        extra row and one extra column are 
        allocated in m[][]. 0th row and 0th
        column of m[][] are not used */
        int[, ] m = new int[n, n];
  
        int i, j, k, L, q;
  
        /* m[i, j] = Minimum number of scalar 
        multiplications needed
        to compute the matrix A[i]A[i+1]...A[j]
        = A[i..j] where dimension of A[i] is 
        p[i-1] x p[i] */
  
        // cost is zero when multiplying
        // one matrix.
        for (i = 1; i < n; i++)
            m[i, i] = 0;
  
        // L is chain length.
        for (L = 2; L < n; L++) {
            for (i = 1; i < n - L + 1; i++) {
                j = i + L - 1;
                if (j == n)
                    continue;
                m[i, j] = int.MaxValue;
                for (k = i; k <= j - 1; k++) {
                    // q = cost/scalar multiplications
                    q = m[i, k] + m[k + 1, j] + p[i - 1] * p[k] * p[j];
                    if (q < m[i, j])
                        m[i, j] = q;
                }
            }
        }
  
        return m[1, n - 1];
    }
  
    // Driver program to test above function
    public static void Main()
    {
        int[] arr = new int[] { 1, 2, 3, 4 };
        int size = arr.Length;
  
        Console.Write("Minimum number of "
                      + "multiplications is " + MatrixChainOrder(arr, size));
    }
}
  
// This code is contributed by Sam007

chevron_right


Output:

Minimum number of multiplications is 18

Please refer complete article on Matrix Chain Multiplication | DP-8 for more details!




My Personal Notes arrow_drop_up
Article Tags :

Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.