Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count ways to generate pairs having Bitwise XOR and Bitwise AND equal to X and Y respectively

  • Difficulty Level : Medium
  • Last Updated : 13 Apr, 2021

Given two integers X and Y, the task is to find the total number of ways to generate a pair of integers A and B such that Bitwise XOR and Bitwise AND between A and B is X and Y respectively

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: X = 2, Y = 5
Output: 2
Explanation:
The two possible pairs are (5, 7) and (7, 5).
Pair 1: (5, 7)
Bitwise AND = 5 & 7 = 2
Bitwise XOR = 5 ^ 7 = 5
Pair 2: (7, 5)
Bitwise AND = 7 & 5 = 2
Bitwise XOR = 7 ^ 5 = 5



Input: X = 7, Y = 5
Output: 0

Naive Approach: The simplest approach to solve the problem is to choose the maximum among X and Y and set all its bits and then check all possible pairs from 0 to that maximum number, say M. If for any pair of A and B, A & B and A⊕B becomes equal to X and Y respectively, then increment the count. Print the final value of count after checking for all possible pairs.
Time Complexity: O(M2)
Auxiliary Space: O(1)

Efficient Approach: The idea is to generate all possible combinations of bits at each position. There are 4 possibilities for the ith bit in X and Y which are as follows:

  1. If Xi = 0 and Yi = 1, then Ai = 1 and Bi = 1.
  2. If Xi = 1 and Yi = 1, then no possible bit assignment exist.
  3. If Xi = 0 and Yi = 0 then Ai = 0 and Bi = 0.
  4. If Xi = 1 and Yi = 0 then Ai = 0 and Bi = 1 or Ai = 1 and Bi = 0, where Ai, Bi, Xi, and Yi represent ith bit in each of them.

Follow the steps below to solve the problem:

  1. Initialize the counter as 1.
  2. For the ith bit, if Xi and Yi are equal to 1, then print 0.
  3. If at ith bit, Xi is 1 and Yi is 0 then multiply the counter by 2 as there are 2 options.
  4. After that, divide X and Y each time by 2.
  5. Repeat the above steps for every ith bit until both of them become 0 and print the value of the counter.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <iostream>
using namespace std;
 
// Function to return the count of
// possible pairs of A and B whose
// Bitwise XOR is X and Y respectively
int countOfPairs(int x, int y)
{
    // Stores the count of pairs
    int counter = 1;
 
    // Iterate till any bit are set
    while (x || y) {
 
        // Extract i-th bit
        // of X and Y
        int bit1 = x % 2;
        int bit2 = y % 2;
 
        // Divide X and Y by 2
        x >>= 1;
        y >>= 1;
 
        // If Xi = 1 and Yi = 2,
        // multiply counter by 2
        if (bit1 == 1 and bit2 == 0) {
 
            // Increase required count
            counter *= 2;
            continue;
        }
 
        // If Xi =1 and Yi = 1
        if (bit1 & bit2) {
 
            // No answer exists
            counter = 0;
            break;
        }
    }
 
    // Return the final count
    return counter;
}
 
// Driver Code
int main()
{
    // Given X and Y
    int X = 2, Y = 5;
 
    // Function Call
    cout << countOfPairs(X, Y);
 
    return 0;
}

Java




// Java program for
// the above approach
import java.util.*;
class GFG{
 
// Function to return the count of
// possible pairs of A and B whose
// Bitwise XOR is X and Y respectively
static int countOfPairs(int x, int y)
{
  // Stores the count of pairs
  int counter = 1;
 
  // Iterate till any bit are set
  while (x > 0 || y > 0)
  {
    // Extract i-th bit
    // of X and Y
    int bit1 = x % 2;
    int bit2 = y % 2;
 
    // Divide X and Y by 2
    x >>= 1;
    y >>= 1;
 
    // If Xi = 1 and Yi = 2,
    // multiply counter by 2
    if (bit1 == 1 && bit2 == 0)
    {
      // Increase required count
      counter *= 2;
      continue;
    }
 
    // If Xi =1 and Yi = 1
    if ((bit1 & bit2) > 0)
    {
      // No answer exists
      counter = 0;
      break;
    }
  }
 
  // Return the final count
  return counter;
}
 
// Driver Code
public static void main(String[] args)
{
  // Given X and Y
  int X = 2, Y = 5;
 
  // Function Call
  System.out.print(countOfPairs(X, Y));
}
}
 
// This code is contributed by Princi Singh

Python3




# Python3 program for the above approach
 
# Function to return the count of
# possible pairs of A and B whose
# Bitwise XOR is X and Y respectively
def countOfPairs(x, y):
 
    # Stores the count of pairs
    counter = 1
 
    # Iterate till any bit are set
    while(x or y):
 
        # Extract i-th bit
        # of X and Y
        bit1 = x % 2
        bit2 = y % 2
 
        # Divide X and Y by 2
        x >>= 1
        y >>= 1
 
        # If Xi = 1 and Yi = 2,
        # multiply counter by 2
        if (bit1 == 1 and bit2 == 0):
             
            # Increase required count
            counter *= 2
            continue
 
        # If Xi =1 and Yi = 1
        if(bit1 & bit2):
 
            # No answer exists
            counter = 0
            break
 
    # Return the final count
    return counter
 
# Driver Code
 
# Given X and Y
X = 2
Y = 5
 
# Function call
print(countOfPairs(X, Y))
 
# This code is contributed by Shivam Singh

C#




// C# program for
// the above approach
using System;
class GFG{
 
// Function to return the count of
// possible pairs of A and B whose
// Bitwise XOR is X and Y respectively
static int countOfPairs(int x, int y)
{
  // Stores the count of pairs
  int counter = 1;
 
  // Iterate till any bit are set
  while (x > 0 || y > 0)
  {
    // Extract i-th bit
    // of X and Y
    int bit1 = x % 2;
    int bit2 = y % 2;
 
    // Divide X and Y by 2
    x >>= 1;
    y >>= 1;
 
    // If Xi = 1 and Yi = 2,
    // multiply counter by 2
    if (bit1 == 1 && bit2 == 0)
    {
      // Increase required count
      counter *= 2;
      continue;
    }
 
    // If Xi =1 and Yi = 1
    if ((bit1 & bit2) > 0)
    {
      // No answer exists
      counter = 0;
      break;
    }
  }
 
  // Return the readonly count
  return counter;
}
 
// Driver Code
public static void Main(String[] args)
{
  // Given X and Y
  int X = 2, Y = 5;
 
  // Function Call
  Console.Write(countOfPairs(X, Y));
}
}
  
// This code is contributed by Rajput-Ji

Javascript




<script>
 
// JavaScript program for
// the above approach
 
// Function to return the count of
// possible pairs of A and B whose
// Bitwise XOR is X and Y respectively
function countOfPairs(x, y)
{
  // Stores the count of pairs
  let counter = 1;
  
  // Iterate till any bit are set
  while (x > 0 || y > 0)
  {
    // Extract i-th bit
    // of X and Y
    let bit1 = x % 2;
    let bit2 = y % 2;
  
    // Divide X and Y by 2
    x >>= 1;
    y >>= 1;
  
    // If Xi = 1 and Yi = 2,
    // multiply counter by 2
    if (bit1 == 1 && bit2 == 0)
    {
      // Increase required count
      counter *= 2;
      continue;
    }
  
    // If Xi =1 and Yi = 1
    if ((bit1 & bit2) > 0)
    {
      // No answer exists
      counter = 0;
      break;
    }
  }
  
  // Return the final count
  return counter;
}
 
// Driver code
 
   // Given X and Y
  let X = 2, Y = 5;
  
  // Function Call
  document.write(countOfPairs(X, Y));
                             
</script>
Output: 
2

 

Time Complexity: O(log M)
Auxiliary Space: O(1)




My Personal Notes arrow_drop_up
Recommended Articles
Page :