Skip to content
Related Articles

Related Articles

Improve Article

Count ways to divide C in two parts and add to A and B to make A strictly greater than B

  • Last Updated : 26 Apr, 2021

Given three integers A, B and C, the task is to count the number of ways to divide C into two parts and add to A and B such that A is strictly greater than B
Examples: 
 

Input: A = 5, B = 3, C = 4 
Output:
The possible values of A and B after dividing C are: 
A = 7, B = 5 where C is divided into 2 and 2. 
A = 8, B = 4 where C is divided into 3 and 1. 
A – 9, B = 3 where C is divided into 4 and 0.
Input: A = 3, B = 5, C = 5 
Output:
 

 

Approach: On observing carefully, the following relation is formed for this problem. 
 

  • Let addA and addB be added to A and B respectively.
  • Therefore, addA + addB = C and it should satisfy the inequality A + addA > B + addB.
  • Now, since addB = C – addA and put it in the inequality: 
     
A + addA > B + (C - addA)
or, 2addA > C + B - A
or, 2addA >= C + B - A + 1
or, addA >= (C + B - A + 1) / 2
  • Since addA must be non negative, addA = max(0, (C + B – A + 1) / 2).
  • The division should be ceiling division, thus we can rewrite as addA = max(0, (C + B – A + 2) / 2).
  • Let this value be equal to minAddA. Since all integer values addA from [minAddA, C], satisfies the relation A + addA > B + addB, so the required number of ways is equal to max(0, C – minAddA + 1).

Below is the implementation of the above approach:
 

C++




// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of ways to divide
// C into two parts and add to A and B such
// that A is strictly greater than B
int countWays(int A, int B, int C)
{
    // Minimum value added to A to satisfy
    // the given relation
    int minAddA = max(0, (C + B - A + 2) / 2);
 
    // Number of different values of A, i.e.,
    // number of ways to divide C
    int count_ways = max(C - minAddA + 1, 0);
 
    return count_ways;
}
 
// Driver code
int main()
{
    int A = 3, B = 5, C = 5;
 
    cout << countWays(A, B, C);
 
    return 0;
}

Java




// Java implementation of the above approach
import java.util.*;
 
class GFG{
 
    // Function to count the number of ways to divide
    // C into two parts and add to A and B such
    // that A is strictly greater than B
    static int countWays(int A, int B, int C)
    {
        // Minimum value added to A to satisfy
        // the given relation
        int minAddA = Math.max(0, (C + B - A + 2) / 2);
     
        // Number of different values of A, i.e.,
        // number of ways to divide C
        int count_ways = Math.max(C - minAddA + 1, 0);
     
        return count_ways;
    }
     
    // Driver code
    public static void main(String args[])
    {
        int A = 3, B = 5, C = 5;
     
        System.out.println(countWays(A, B, C));
    }
}
 
// This code is contributed by AbhiThakur

Python3




# Python3 implementation of the above approach
 
# Function to count the number of ways to divide
# C into two parts and add to A and B such
# that A is strictly greater than B
def countWays(A, B, C):
     
    # Minimum value added to A to satisfy
    # the given relation
    minAddA = max(0, (C + B - A + 2) // 2)
     
    # Number of different values of A, i.e.,
    # number of ways to divide C
    count_ways = max(C - minAddA + 1, 0)
     
    return count_ways
 
# Driver code
A = 3
B = 5
C = 5
print(countWays(A, B, C))
 
# This code is contributed by shivanisingh

C#




// C# implementation of the above approach
using System;
  
class GFG
{
 
// Function to count the number of ways to divide
// C into two parts and add to A and B such
// that A is strictly greater than B
static int countWays(int A, int B, int C)
{
    // Minimum value added to A to satisfy
    // the given relation
    int minAddA = Math.Max(0, (C + B - A + 2) / 2);
 
    // Number of different values of A, i.e.,
    // number of ways to divide C
    int count_ways = Math.Max(C - minAddA + 1, 0);
 
    return count_ways;
}
 
// Driver Code
public static void Main(String[] args)
{
    int A = 3, B = 5, C = 5;
 
    Console.Write(countWays(A, B, C));
}
 
}
 
// This code is contributed by shivanisinghss2110

Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to count the number of ways to divide
// C into two parts and add to A and B such
// that A is strictly greater than B
function countWays(A, B, C)
{
    // Minimum value added to A to satisfy
    // the given relation
    var minAddA = Math.max(0, parseInt((C + B - A + 2) / 2));
 
    // Number of different values of A, i.e.,
    // number of ways to divide C
    var count_ways = Math.max(C - minAddA + 1, 0);
 
    return count_ways;
}
 
// Driver code
var A = 3, B = 5, C = 5;
document.write( countWays(A, B, C));
 
// This code is contributed by rutvik_56.
</script>
Output: 
2

 

Attention reader! Don’t stop learning now. Participate in the Scholorship Test for First-Step-to-DSA Course for Class 9 to 12 students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :