Given a positive integer N, the task is to find the number of triplets (A, B, C) where A, B, C are positive integers such that the product of two numbers added with the third number is N i.e., A * B + C = N.
Examples:
Input: N = 3
Output: 3
Explanation:
Following are the possible triplets satisfying the given criteria:
- (1, 1, 2): The value of 1*1 + 2 = 3.
- (1, 2, 1): The value of 1*2 + 1 = 3.
- (2, 1, 1): The value of 2*1 + 1 = 3.
Therefore, the total count of such triplets is 3.
Input: N = 5
Output: 8
Approach: The given problem can be solved by rearranging the equation A * B + C = N as A * B = N – C. Now, the only possible values A and B can have to satisfy the above equation is the divisors of N – C. For Example, if the value of N – C = 18, having 6 divisors that are 1, 2, 3, 6, 9, 18. So, values of A, B satisfying the above equation are: (1, 18), (2, 9), (3, 6), (6, 3), (9, 2), (18, 1). So, for the value of N – C = 18, possible values of A, B are 6, i.e., the number of divisors of N – C(= 18). Follow the steps below to solve the given problem:
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int countDivisors( int n)
{
int divisors = 0;
int i;
for (i = 1; i * i < n; i++) {
if (n % i == 0) {
divisors++;
}
}
if (i - (n / i) == 1) {
i--;
}
for (; i >= 1; i--) {
if (n % i == 0) {
divisors++;
}
}
return divisors;
}
int possibleTriplets( int N)
{
int count = 0;
for ( int i = 1; i < N; i++) {
count += countDivisors(N - i);
}
return count;
}
int main()
{
int N = 10;
cout << possibleTriplets(N);
return 0;
}
|
Java
import java.io.*;
class GFG
{
static int countDivisors( int n)
{
int divisors = 0 ;
int i;
for (i = 1 ; i * i < n; i++) {
if (n % i == 0 ) {
divisors++;
}
}
if (i - (n / i) == 1 ) {
i--;
}
for (; i >= 1 ; i--) {
if (n % i == 0 ) {
divisors++;
}
}
return divisors;
}
static int possibleTriplets( int N)
{
int count = 0 ;
for ( int i = 1 ; i < N; i++) {
count += countDivisors(N - i);
}
return count;
}
public static void main (String[] args) {
int N = 10 ;
System.out.println(possibleTriplets(N));
}
}
|
Python3
import math
def countDivisors(n):
divisors = 0
for i in range ( 1 , math.ceil(math.sqrt(n)) + 1 ):
if n % i = = 0 :
divisors = divisors + 1
if (i - (n / i) = = 1 ):
i = i - 1
for i in range (math.ceil(math.sqrt(n)) + 1 , 1 , - 1 ):
if (n % i = = 0 ):
divisors = divisors + 1
return divisors
def possibleTriplets(N):
count = 0
for i in range ( 1 , N):
count = count + countDivisors(N - i)
return count
if __name__ = = "__main__" :
N = 10
print (possibleTriplets(N))
|
C#
using System;
using System.Collections.Generic;
class GFG{
static int countDivisors( int n)
{
int divisors = 0;
int i;
for (i = 1; i * i < n; i++) {
if (n % i == 0) {
divisors++;
}
}
if (i - (n / i) == 1) {
i--;
}
for (; i >= 1; i--) {
if (n % i == 0) {
divisors++;
}
}
return divisors;
}
static int possibleTriplets( int N)
{
int count = 0;
for ( int i = 1; i < N; i++) {
count += countDivisors(N - i);
}
return count;
}
public static void Main()
{
int N = 10;
Console.Write(possibleTriplets(N));
}
}
|
Javascript
<script>
function countDivisors(n)
{
var divisors = 0;
var i;
for (i = 1; i * i < n; i++) {
if (n % i == 0) {
divisors++;
}
}
if (i - (n / i) == 1) {
i--;
}
for (; i >= 1; i--) {
if (n % i == 0) {
divisors++;
}
}
return divisors;
}
function possibleTriplets(N)
{
var count = 0;
for ( var i = 1; i < N; i++) {
count += countDivisors(N - i);
}
return count;
}
var N = 10;
document.write(possibleTriplets(N));
</script>
|
Time Complexity: O(N*sqrt(N))
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
11 Oct, 2021
Like Article
Save Article