# Sum of all divisors from 1 to n

Given a positive integer n. Find the value of where function F(i) for number i be defined as sum of all divisors of ‘i‘.
Examples :

Input: 4
Output: 15
Explanation
F(1) = 1
F(2) = 1 + 2 = 3
F(3) = 1 + 3 = 4
F(4) = 1 + 2 + 4 = 7
ans = F(1) + F(2) + F(3) + F(4)
= 1 + 3 + 4 + 7
= 15

Input: 5
Output: 21


## Recommended: Please solve it on PRACTICE first, before moving on to the solution.

Naive approach is to traverse for every number(1 to n), find all divisors and keep updating the sum with that divisor. See this to understand more.

## C++

 // CPP program to find sum of all  // divisor of number up to 'n'  #include     // Utility function to find sum of  // all divisor of number up to 'n'  int divisorSum(int n) i  {      int sum = 0;         for (int i = 1; i <= n; ++i) {             // Find all divisors of i and add them          for (int j = 1; j * j <= i; ++j) {              if (i % j == 0) {                  if (i / j == j)                      sum += j;                  else                     sum += j + i / j;              }          }      }      return sum;  }     // Driver code  int main()  {      int n = 4;      printf("%d\n", divisorSum(n));      n = 5;      printf("%d", divisorSum(n));      return 0;  }

## Java

 // JAVA program to find sum of all  // divisor of number up to 'n'  import java.io.*;     class GFG {         // Utility function to find sum of      // all divisor of number up to 'n'      static int divisorSum(int n)      {          int sum = 0;             for (int i = 1; i <= n; ++i) {                 // Find all divisors of i              // and add them              for (int j = 1; j * j <= i; ++j) {                  if (i % j == 0) {                      if (i / j == j)                          sum += j;                      else                         sum += j + i / j;                  }              }          }          return sum;      }         // Driver code      public static void main(String args[])      {          int n = 4;          System.out.println(divisorSum(n));          n = 5;          System.out.println(divisorSum(n));      }  }     /*This code is contributed by Nikita tiwari.*/

## Python3

 # Python3 code to find sum of all  # divisor of number up to 'n'     # Utility function to find sum of  # all divisor of number up to 'n'  def divisorSum( n ):      sum = 0            for i in range(1, n + 1):                     # Find all divisors of i          # and add them          j = 1         while j * j <= i:              if i % j == 0:                  if i / j == j:                      sum += j                  else:                      sum += j + i / j              j = j + 1     return int(sum)     # Driver code  n = 4 print( divisorSum(n))  n = 5 print( divisorSum(n))     # This code is contributed by "Sharad_Bhardwaj".

## C#

 // C# program to find sum of all  // divisor of number up to 'n'  using System;     class GFG {         // Utility function to find sum of      // all divisor of number up to 'n'      static int divisorSum(int n)      {          int sum = 0;             for (int i = 1; i <= n; ++i) {                 // Find all divisors of i              // and add them              for (int j = 1; j * j <= i; ++j) {                  if (i % j == 0) {                      if (i / j == j)                          sum += j;                      else                         sum += j + i / j;                  }              }          }          return sum;      }         // Driver code      public static void Main()      {          int n = 4;          Console.WriteLine(divisorSum(n));          n = 5;          Console.WriteLine(divisorSum(n));      }  }     /*This code is contributed by vt_m.*/

## PHP

 

Output :

15
21


Time complexity: O( )
Auxiliary space: O(1)

Efficient approach is to observe the function and co-relate the pattern. For a given number n, every number from 1 to n contribute it’s presence up to the highest multiple less than n. For instance,

Let n = 6,
=> F(1) + F(2) + F(3) + F(4) + F(5) + F(6)
=> 1 will occurs 6 times in F(1), F(2),
F(3), F(4), F(5) and F(6)
=> 2 will occurs 3 times in F(2), F(4) and
F(6)
=> 3 will occur 2 times in F(3) and F(6)
=> 4 will occur 1 times in F(4)
=> 5 will occur 1 times in F(5)
=> 6 will occur 1 times in F(6)


From above observation, it can easily be observed that number i is occurring only in there multiples less than or equal to n. Thus, we just need to find the count of multiples and then multiply it with i for full contribution in the final sum. It can easily be done in O(1) time by taking floor of (n / i) and then multiply it with i for the sum.

## C++

 // CPP program to find sum of all  // divisor of number up to 'n'  #include     // Utility function to find sum of  // all divisor of number up to 'n'  int divisorSum(int n)  {      int sum = 0;      for (int i = 1; i <= n; ++i)          sum += (n / i) * i;      return sum;  }     // Driver code  int main()  {      int n = 4;      printf("%d\n", divisorSum(n));      n = 5;      printf("%d", divisorSum(n));      return 0;  }

## Java

 // Java program to find sum of all  // divisor of number up to 'n'  import java.io.*;     class GFG {         // Utility function to find sum of      // all divisor of number up to 'n'      static int divisorSum(int n)      {          int sum = 0;          for (int i = 1; i <= n; ++i)              sum += (n / i) * i;          return sum;      }         // Driver code      public static void main(String args[])      {          int n = 4;          System.out.println(divisorSum(n));          n = 5;          System.out.println(divisorSum(n));      }  }     /*This code is contributed by Nikita Tiwari.*/

## Python3

 # Python3 code to find sum of all  # divisor of number up to 'n'     # Utility function to find sum of  # all divisor of number up to 'n'  def divisorSum( n ):      sum = 0     for i in range(1, n + 1):          sum += int(n / i) * i      return int(sum)         # Driver code  n = 4 print( divisorSum(n))  n = 5 print( divisorSum(n))     # This code is contributed by "Sharad_Bhardwaj".

## C#

 // C# program to find sum of all  // divisor of number up to 'n'  using System;     class GFG {         // Utility function to find sum of      // all divisor of number up to 'n'      static int divisorSum(int n)      {          int sum = 0;          for (int i = 1; i <= n; ++i)              sum += (n / i) * i;          return sum;      }         // Driver code      public static void Main()      {          int n = 4;          Console.WriteLine(divisorSum(n));          n = 5;          Console.WriteLine(divisorSum(n));      }  }     /*This code is contributed by vt_m.*/

## PHP

 

Output :

15
21


Time complexity: O(n)
Auxiliary space: O(1)

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : jit_t, vt_m

Article Tags :

3

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.