Aliquot sum

In number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself.

They are defined by the sums of their aliquot divisors. The aliquot divisors of a number are all of its divisors except the number itself. The aliquot sum is the sum of the aliquot divisors so, for example, the aliquot divisors of 12 are 1, 2, 3, 4, and 6 and it’s aliquot sum is 16.

A number whose aliquot sum equals its value is a PERFECT number (6 for example).

Examples :

Input : 12
Output : 16
Explanation :
Proper divisors of 12 is = 1, 2, 3, 4, 6 
and sum 1 + 2 + 3 + 4 + 6 = 16

Input : 15
Output : 9
Explanation :
Proper divisors of 15 is 1, 3, 5
and sum 1 + 3 + 5 = 9

A simple solution is to traverse through all numbers smaller than n. For every number i, check if i divides n. If yes, we add it to result.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program for aliquot sum
#include <iostream>
using namespace std;
  
// Function to calculate sum of 
// all proper divisors
int aliquotSum(int n)
{
    int sum = 0;
    for (int i = 1; i < n; i++) 
        if (n % i == 0) 
            sum += i;        
      
    return sum; 
}
  
// Driver Code
int main()
{
    int n = 12;
    cout << aliquotSum(n); 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for aliquot sum
import java.io.*;
  
class GFG {
      
    // Function to calculate sum of 
    // all proper divisors
    static int aliquotSum(int n)
    {
        int sum = 0;
        for (int i = 1; i < n; i++) 
            if (n % i == 0
                sum += i;
                  
        return sum; 
    }
      
    // Driver Code
    public static void main(String args[])
                           throws IOException
    {
        int n = 12;
        System.out.println(aliquotSum(n));
    }
}
  
/* This code is contributed by Nikita Tiwari.*/

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program for aliquot sum
  
# Function to calculate sum of 
# all proper divisors
def aliquotSum(n) :
    sm = 0
    for i in range(1,n) :
        if (n % i == 0) :
            sm = sm + i     
      
    return sm # return sum
  
  
# Driver Code
n = 12
print(aliquotSum(n))
  
# This code is contributed by Nikita Tiwari.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for aliquot sum
using System;
  
class GFG {
      
    // Function to calculate sum of 
    // all proper divisors
    static int aliquotSum(int n)
    {
        int sum = 0;
        for (int i = 1; i < n; i++) 
            if (n % i == 0) 
                sum += i;
                  
        return sum; 
    }
      
    // Driver Code
    public static void Main()
                          
    {
        int n = 12;
        Console.WriteLine(aliquotSum(n));
    }
}
  
/* This code is contributed by vt_m.*/

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program for aliquot sum
  
// Function to calculate sum of 
// all proper divisors
function aliquotSum($n)
{
    $sum = 0;
    for ($i = 1; $i < $n; $i++) 
        if ($n % $i == 0) 
            $sum += $i;     
      
    return $sum
}
  
// Driver Code
$n = 12;
echo(aliquotSum($n)); 
  
// This code is contributed by Ajit.
?>

chevron_right



Output :

16

Efficient Solutions :
Sum of all proper divisors of a natural number
Sum of all the factors of a number



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : jit_t