Count the number of ways to give ranks for N students such that same ranks are possible
Given a number N which represents the number of students, the task is to calculate all possible ways to rank them according to their CGPA/marks, considering that two or more students can have the same rank. Since the answer can be large, perform the modulo with 109 + 7.
Examples:
Input: N = 1
Output: 1
Explanation:
There is only one way to rank a student, irrespective of his marks.Input: N = 2
Output: 2
Explanation:
In the following two ways the ranks can be distributed among two students:
The high scoring student can be awarded the first rank and the low scoring student the second rank or both of them can be awarded the same rank if they have equal scores.
Approach: The idea for this problem is to use the Bell Numbers.
- A bell number is a number that counts the possible partitions of a set. Therefore, an N-th bell number is a number of non-empty subsets a set of size N can be partitioned into.
- For example, let’s consider the set {1, 2, 3} for N = 3. The bell number corresponding to N = 3 is 5. This signifies that the given set can be partitioned into following 5 non-empty subsets:
{{1}, {2}, {3}} {{1, 2}, {3}} {{1, 3}, {2}} {{2, 3}, {1}} {{1, 2, 3}}
- Clearly, the above bell numbers signify all the possible ranks. However, they do not calculate the permutations of the subset.
- Therefore, by multiplying every subset with K!, where K denotes the size of the respective subset, we get all the possible arrangements.
- As the same subproblems can be repeated, we can store the values of each subproblem in a data structure to optimize the complexity.
Below is the implementation of the above approach:
C++
// C++ program to calculate the number // of ways to give ranks for N // students such that same ranks // are possible #include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; // Initializing a table in order to // store the bell triangle vector<vector< int > > dp; // Function to calculate the K-th // bell number int f( int n, int k) { // If we have already calculated // the bell numbers until the // required N if (n < k) return 0; // Base case if (n == k) return 1; // First Bell Number if (k == 1) return 1; // If the value of the bell // triangle has already been // calculated if (dp[n][k] != -1) return dp[n][k]; // Fill the defined dp table return dp[n][k] = ((k * f(n - 1, k)) % mod + (f(n - 1, k - 1)) % mod) % mod; } // Function to return the number // of ways to give ranks for N // students such that same ranks // are possible long operation( int n) { // Resizing the dp table for the // given value of n dp.resize(n + 1, vector< int >(n + 1, -1)); // Variables to store the answer // and the factorial value long ans = 0, fac = 1; // Iterating till N for ( int k = 1; k <= n; k++) { // Simultaneously calculate the k! fac *= k; // Computing the K-th bell number // and multiplying it with K! ans = (ans + (fac * f(n, k)) % mod) % mod; } return ans; } // Driver code int main() { int n = 5; cout << operation(n) << endl; return 0; } |
Java
// Java program to calculate the number // of ways to give ranks for N // students such that same ranks // are possible import java.util.*; class GFG{ static int mod = ( int )(1e9 + 7 ); // Initializing a table in order to // store the bell triangle static int [][]dp; // Function to calculate the K-th // bell number static int f( int n, int k) { // If we have already calculated // the bell numbers until the // required N if (n < k) return 0 ; // Base case if (n == k) return 1 ; // First Bell Number if (k == 1 ) return 1 ; // If the value of the bell // triangle has already been // calculated if (dp[n][k] != - 1 ) return dp[n][k]; // Fill the defined dp table return dp[n][k] = ((k * f(n - 1 , k)) % mod + (f(n - 1 , k - 1 )) % mod) % mod; } // Function to return the number // of ways to give ranks for N // students such that same ranks // are possible static long operation( int n) { // Resizing the dp table for the // given value of n dp = new int [n + 1 ][n + 1 ]; for ( int i = 0 ; i < n + 1 ; i++) { for ( int j = 0 ; j < n + 1 ; j++) { dp[i][j] = - 1 ; } } // Variables to store the answer // and the factorial value long ans = 0 , fac = 1 ; // Iterating till N for ( int k = 1 ; k <= n; k++) { // Simultaneously calculate the k! fac *= k; // Computing the K-th bell number // and multiplying it with K! ans = (ans + (fac * f(n, k)) % mod) % mod; } return ans; } // Driver code public static void main(String[] args) { int n = 5 ; System.out.print(operation(n) + "\n" ); } } // This code is contributed by amal kumar choubey |
Python3
# Python3 program to calculate the number # of ways to give ranks for N # students such that same ranks # are possible mod = 1e9 + 7 # Initializing a table in order to # store the bell triangle dp = [[ - 1 for x in range ( 6 )] for y in range ( 6 )] # Function to calculate the K-th # bell number def f(n, k): # If we have already calculated # the bell numbers until the # required N if (n < k): return 0 # Base case if (n = = k): return 1 # First Bell Number if (k = = 1 ): return 1 # If the value of the bell # triangle has already been # calculated if (dp[n][k] ! = - 1 ): return dp[n][k] # Fill the defined dp table dp[n][k] = ((((k * f(n - 1 , k)) % mod + (f(n - 1 , k - 1 )) % mod) % mod)) return dp[n][k] # Function to return the number # of ways to give ranks for N # students such that same ranks # are possible def operation(n): # Resizing the dp table for the # given value of n global dp # Variables to store the answer # and the factorial value ans = 0 fac = 1 # Iterating till N for k in range ( 1 , n + 1 ): # Simultaneously calculate the k! fac * = k # Computing the K-th bell number # and multiplying it with K! ans = (ans + (fac * f(n, k)) % mod) % mod return ans # Driver code if __name__ = = "__main__" : n = 5 print ( int (operation(n))) # This code is contributed by ukasp |
C#
// C# program to calculate the number // of ways to give ranks for N // students such that same ranks // are possible using System; class GFG{ static int mod = ( int )(1e9 + 7); // Initializing a table in order to // store the bell triangle static int [,]dp; // Function to calculate the K-th // bell number static int f( int n, int k) { // If we have already calculated // the bell numbers until the // required N if (n < k) return 0; // Base case if (n == k) return 1; // First Bell Number if (k == 1) return 1; // If the value of the bell // triangle has already been // calculated if (dp[n, k] != -1) return dp[n, k]; // Fill the defined dp table return dp[n, k] = ((k * f(n - 1, k)) % mod + (f(n - 1, k - 1)) % mod) % mod; } // Function to return the number // of ways to give ranks for N // students such that same ranks // are possible static long operation( int n) { // Resizing the dp table for the // given value of n dp = new int [n + 1, n + 1]; for ( int i = 0; i < n + 1; i++) { for ( int j = 0; j < n + 1; j++) { dp[i, j] = -1; } } // Variables to store the answer // and the factorial value long ans = 0, fac = 1; // Iterating till N for ( int k = 1; k <= n; k++) { // Simultaneously calculate the k! fac *= k; // Computing the K-th bell number // and multiplying it with K! ans = (ans + (fac * f(n, k)) % mod) % mod; } return ans; } // Driver code public static void Main(String[] args) { int n = 5; Console.Write(operation(n) + "\n" ); } } // This code is contributed by amal kumar choubey |
Javascript
<script> // Javascript program to calculate the number // of ways to give ranks for N // students such that same ranks // are possible var mod = parseInt( 1e9 + 7); // Initializing a table in order to // store the bell triangle var dp; // Function to calculate the K-th // bell number function f(n , k) { // If we have already calculated // the bell numbers until the // required N if (n < k) return 0; // Base case if (n == k) return 1; // First Bell Number if (k == 1) return 1; // If the value of the bell // triangle has already been // calculated if (dp[n][k] != -1) return dp[n][k]; // Fill the defined dp table return dp[n][k] = ((k * f(n - 1, k)) % mod + (f(n - 1, k - 1)) % mod) % mod; } // Function to return the number // of ways to give ranks for N // students such that same ranks // are possible function operation(n) { // Resizing the dp table for the // given value of n dp = Array(n + 1).fill().map(() =>Array(n + 1).fill(0)); for (i = 0; i < n + 1; i++) { for (j = 0; j < n + 1; j++) { dp[i][j] = -1; } } // Variables to store the answer // and the factorial value var ans = 0, fac = 1; // Iterating till N for (k = 1; k <= n; k++) { // Simultaneously calculate the k! fac *= k; // Computing the K-th bell number // and multiplying it with K! ans = (ans + (fac * f(n, k)) % mod) % mod; } return ans; } // Driver code var n = 5; document.write(operation(n) + "\n" ); // This code contributed by umadevi9616 </script> |
541
Please Login to comment...