Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count subarrays with equal number of 1’s and 0’s

  • Difficulty Level : Hard
  • Last Updated : 31 Aug, 2021

Given an array arr[] of size n containing 0 and 1 only. The problem is to count the subarrays having an equal number of 0’s and 1’s.

Examples:  

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input : arr[] = {1, 0, 0, 1, 0, 1, 1}
Output : 8
The index range for the 8 sub-arrays are:
(0, 1), (2, 3), (0, 3), (3, 4), (4, 5)
(2, 5), (0, 5), (1, 6)

The problem is closely related to the Largest subarray with an equal number of 0’s and 1’s.
Approach: Following are the steps: 



  1. Consider all 0’s in arr[] as -1.
  2. Create a hash table that holds the count of each sum[i] value, where sum[i] = sum(arr[0]+..+arr[i]), for i = 0 to n-1.
  3. Now start calculating the cumulative sum and then we get an incremental count of 1 for that sum represented as an index in the hash table. Arrays of each pair of positions with the same value in the cumulative sum constitute a continuous range with an equal number of 1’s and 0’s.
  4. Now traverse the hash table and get the frequency of each element in the hash table. Let frequency be denoted as freq. For each freq > 1 we can choose any two pairs of indices of a sub-array by (freq * (freq – 1)) / 2 number of ways. Do the same for all freq and sum up the result will be the number of all possible sub-arrays containing the equal number of 1’s and 0’s.
  5. Also, add freq of the sum of 0 to the hash table for the final result.

Explanation: 
Considering all 0’s as -1, if sum[i] == sum[j], where sum[i] = sum(arr[0]+..+arr[i]) and sum[j] = sum(arr[0]+..+arr[j]) and ‘i’ is less than ‘j’, then sum(arr[i+1]+..+arr[j]) must be 0. It can only be 0 if arr(i+1, .., j) contains an equal number of 1’s and 0’s. 

C++




// C++ implementation to count subarrays with
// equal number of 1's and 0's
#include <bits/stdc++.h>
 
using namespace std;
 
// function to count subarrays with
// equal number of 1's and 0's
int countSubarrWithEqualZeroAndOne(int arr[], int n)
{
    // 'um' implemented as hash table to store
    // frequency of values obtained through
    // cumulative sum
    unordered_map<int, int> um;
    int curr_sum = 0;
 
    // Traverse original array and compute cumulative
    // sum and increase count by 1 for this sum
    // in 'um'. Adds '-1' when arr[i] == 0
    for (int i = 0; i < n; i++) {
        curr_sum += (arr[i] == 0) ? -1 : arr[i];
        um[curr_sum]++;
    }
 
    int count = 0;
    // traverse the hash table 'um'
    for (auto itr = um.begin(); itr != um.end(); itr++) {
 
        // If there are more than one prefix subarrays
        // with a particular sum
        if (itr->second > 1)
            count += ((itr->second * (itr->second - 1)) / 2);
    }
 
    // add the subarrays starting from 1st element and
    // have equal number of 1's and 0's
    if (um.find(0) != um.end())
        count += um[0];
 
    // required count of subarrays
    return count;
}
 
// Driver program to test above
int main()
{
    int arr[] = { 1, 0, 0, 1, 0, 1, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << "Count = "
         << countSubarrWithEqualZeroAndOne(arr, n);
    return 0;
}

Java




// Java implementation to count subarrays with
// equal number of 1's and 0's
import java.util.*;
 
class GFG
{
 
// function to count subarrays with
// equal number of 1's and 0's
static int countSubarrWithEqualZeroAndOne(int arr[], int n)
{
    // 'um' implemented as hash table to store
    // frequency of values obtained through
    // cumulative sum
    Map<Integer,Integer> um = new HashMap<>();
    int curr_sum = 0;
 
    // Traverse original array and compute cumulative
    // sum and increase count by 1 for this sum
    // in 'um'. Adds '-1' when arr[i] == 0
    for (int i = 0; i < n; i++) {
        curr_sum += (arr[i] == 0) ? -1 : arr[i];
        um.put(curr_sum, um.get(curr_sum)==null?1:um.get(curr_sum)+1);
    }
 
    int count = 0;
     
    // traverse the hash table 'um'
    for (Map.Entry<Integer,Integer> itr : um.entrySet())
    {
 
        // If there are more than one prefix subarrays
        // with a particular sum
        if (itr.getValue() > 1)
            count += ((itr.getValue()* (itr.getValue()- 1)) / 2);
    }
 
    // add the subarrays starting from 1st element and
    // have equal number of 1's and 0's
    if (um.containsKey(0))
        count += um.get(0);
 
    // required count of subarrays
    return count;
}
 
// Driver program to test above
public static void main(String[] args)
{
    int arr[] = { 1, 0, 0, 1, 0, 1, 1 };
    int n = arr.length;
    System.out.println("Count = "
        + countSubarrWithEqualZeroAndOne(arr, n));
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 implementation to count
# subarrays with equal number
# of 1's and 0's
 
# function to count subarrays with
# equal number of 1's and 0's
def countSubarrWithEqualZeroAndOne (arr, n):
 
    # 'um' implemented as hash table
    # to store frequency of values
    # obtained through cumulative sum
    um = dict()
    curr_sum = 0
     
    # Traverse original array and compute
    # cumulative sum and increase count
    # by 1 for this sum in 'um'.
    # Adds '-1' when arr[i] == 0
    for i in range(n):
        curr_sum += (-1 if (arr[i] == 0) else arr[i])
        if um.get(curr_sum):
            um[curr_sum]+=1
        else:
            um[curr_sum]=1
     
    count = 0
     
    # traverse the hash table 'um'
    for itr in um:
         
        # If there are more than one
        # prefix subarrays with a
        # particular sum
        if um[itr] > 1:
            count += ((um[itr] * int(um[itr] - 1)) / 2)
     
    # add the subarrays starting from
    # 1st element and have equal
    # number of 1's and 0's
    if um.get(0):
        count += um[0]
     
    # required count of subarrays
    return int(count)
     
# Driver code to test above
arr = [ 1, 0, 0, 1, 0, 1, 1 ]
n = len(arr)
print("Count =",
    countSubarrWithEqualZeroAndOne(arr, n))
 
# This code is contributed by "Sharad_Bhardwaj".

C#




// C# implementation to count subarrays
// with equal number of 1's and 0's
using System;
using System.Collections.Generic;
 
class GFG
{
 
// function to count subarrays with
// equal number of 1's and 0's
static int countSubarrWithEqualZeroAndOne(int []arr,
                                          int n)
{
    // 'um' implemented as hash table to store
    // frequency of values obtained through
    // cumulative sum
    Dictionary<int,
               int> mp = new Dictionary<int,
                                        int>();
    int curr_sum = 0;
 
    // Traverse original array and compute cumulative
    // sum and increase count by 1 for this sum
    // in 'um'. Adds '-1' when arr[i] == 0
    for (int i = 0; i < n; i++)
    {
        curr_sum += (arr[i] == 0) ? -1 : arr[i];
        if(mp.ContainsKey(curr_sum))
        {
            var v = mp[curr_sum];
            mp.Remove(curr_sum);
            mp.Add(curr_sum, ++v);
        }
        else
            mp.Add(curr_sum, 1);
    }
 
    int count = 0;
     
    // traverse the hash table 'um'
    foreach(KeyValuePair<int, int> itr in mp)
    {
 
        // If there are more than one prefix subarrays
        // with a particular sum
        if (itr.Value > 1)
            count += ((itr.Value* (itr.Value - 1)) / 2);
    }
 
    // add the subarrays starting from 1st element
    // and have equal number of 1's and 0's
    if (mp.ContainsKey(0))
        count += mp[0];
 
    // required count of subarrays
    return count;
}
 
// Driver program to test above
public static void Main(String[] args)
{
    int []arr = { 1, 0, 0, 1, 0, 1, 1 };
    int n = arr.Length;
    Console.WriteLine("Count = " +
            countSubarrWithEqualZeroAndOne(arr, n));
}
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
 
// Javascript implementation to count subarrays with
// equal number of 1's and 0's
 
// function to count subarrays with
// equal number of 1's and 0's
function countSubarrWithEqualZeroAndOne(arr, n)
{
    // 'um' implemented as hash table to store
    // frequency of values obtained through
    // cumulative sum
    var um = new Map();
    var curr_sum = 0;
 
    // Traverse original array and compute cumulative
    // sum and increase count by 1 for this sum
    // in 'um'. Adds '-1' when arr[i] == 0
    for (var i = 0; i < n; i++) {
        curr_sum += (arr[i] == 0) ? -1 : arr[i];
        if(um.has(curr_sum))
            um.set(curr_sum, um.get(curr_sum)+1);
        else
            um.set(curr_sum, 1)
    }
 
    var count = 0;
    // traverse the hash table 'um'
    um.forEach((value, key) => {
         
        // If there are more than one prefix subarrays
        // with a particular sum
        if (value > 1)
            count += ((value * (value - 1)) / 2);
    });
 
    // add the subarrays starting from 1st element and
    // have equal number of 1's and 0's
    if (um.has(0))
        count += um.get(0);
 
    // required count of subarrays
    return count;
}
 
// Driver program to test above
var arr = [1, 0, 0, 1, 0, 1, 1];
var n = arr.length;
document.write( "Count = "
      + countSubarrWithEqualZeroAndOne(arr, n));
 
// This code is contributed by noob2000.
</script>

Output:  

Count = 8

Time Complexity: O(n). 
Auxiliary Space: O(n). 
 

Another approach:  

C++




#include <bits/stdc++.h>
 
using namespace std;
 
int countSubarrWithEqualZeroAndOne(int arr[], int n)
{
    map<int, int> mp;
    int sum = 0;
    int count = 0;
    for (int i = 0; i < n; i++) {
        // Replacing 0's in array with -1
        if (arr[i] == 0)
            arr[i] = -1;
 
        sum += arr[i];
 
        // If sum = 0, it implies number of 0's and 1's are
        // equal from arr[0]..arr[i]
        if (sum == 0)
            count++;
 
          //if mp[sum] exists then add "frequency-1" to count
        if (mp[sum])
            count += mp[sum];
       
          //if frequency of "sum" is zero then we initialize that frequency to 1
          //if its not 0, we increment it
        if (mp[sum] == 0)
            mp[sum] = 1;
        else
            mp[sum]++;
    }
    return count;
}
 
int main()
{
    int arr[] = { 1, 0, 0, 1, 0, 1, 1 };
 
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << "count="
         << countSubarrWithEqualZeroAndOne(arr, n);
}

Java




import java.util.HashMap;
import java.util.Map;
 
// Java implementation to count subarrays with
// equal number of 1's and 0's
public class Main {
 
    // Function that returns count of sub arrays
    // with equal numbers of 1's and 0's
    static int countSubarrWithEqualZeroAndOne(int[] arr,
                                              int n)
    {
        Map<Integer, Integer> myMap = new HashMap<>();
        int sum = 0;
        int count = 0;
        for (int i = 0; i < n; i++) {
            // Replacing 0's in array with -1
            if (arr[i] == 0)
                arr[i] = -1;
 
            sum += arr[i];
 
            // If sum = 0, it implies number of 0's and 1's
            // are equal from arr[0]..arr[i]
            if (sum == 0)
                count++;
 
            if (myMap.containsKey(sum))
                count += myMap.get(sum);
 
            if (!myMap.containsKey(sum))
                myMap.put(sum, 1);
            else
                myMap.put(sum, myMap.get(sum) + 1);
        }
        return count;
    }
 
    // main function
    public static void main(String[] args)
    {
        int arr[] = { 1, 0, 0, 1, 0, 1, 1 };
        int n = arr.length;
        System.out.println(
            "Count = "
            + countSubarrWithEqualZeroAndOne(arr, n));
    }
}

Python3




# Python3 implementation to count subarrays
# with equal number of 1's and 0's
 
 
def countSubarrWithEqualZeroAndOne(arr, n):
    mp = dict()
    Sum = 0
    count = 0
 
    for i in range(n):
 
        # Replacing 0's in array with -1
        if (arr[i] == 0):
            arr[i] = -1
 
        Sum += arr[i]
 
        # If Sum = 0, it implies number of
        # 0's and 1's are equal from arr[0]..arr[i]
        if (Sum == 0):
            count += 1
 
        if (Sum in mp.keys()):
            count += mp[Sum]
 
        mp[Sum] = mp.get(Sum, 0) + 1
 
    return count
 
 
# Driver Code
arr = [1, 0, 0, 1, 0, 1, 1]
 
n = len(arr)
 
print("count =",
      countSubarrWithEqualZeroAndOne(arr, n))
 
# This code is contributed by mohit kumar

C#




// C# implementation to count subarrays with
// equal number of 1's and 0's
using System;
using System.Collections.Generic;
 
class GFG {
 
    // Function that returns count of sub arrays
    // with equal numbers of 1's and 0's
    static int countSubarrWithEqualZeroAndOne(int[] arr,
                                              int n)
    {
        Dictionary<int, int> myMap
            = new Dictionary<int, int>();
        int sum = 0;
        int count = 0;
        for (int i = 0; i < n; i++) {
            // Replacing 0's in array with -1
            if (arr[i] == 0)
                arr[i] = -1;
 
            sum += arr[i];
 
            // If sum = 0, it implies number of 0's and 1's
            // are equal from arr[0]..arr[i]
            if (sum == 0)
                count++;
 
            if (myMap.ContainsKey(sum))
                count += myMap[sum];
 
            if (!myMap.ContainsKey(sum))
                myMap.Add(sum, 1);
            else {
                var v = myMap[sum] + 1;
                myMap.Remove(sum);
                myMap.Add(sum, v);
            }
        }
        return count;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int[] arr = { 1, 0, 0, 1, 0, 1, 1 };
        int n = arr.Length;
        Console.WriteLine(
            "Count = "
            + countSubarrWithEqualZeroAndOne(arr, n));
    }
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
  
// Javascript implementation to count subarrays with
// equal number of 1's and 0's
 
function countSubarrWithEqualZeroAndOne(arr, n)
{
    var mp = new Map();
    var sum = 0;
    let count = 0;
     
    for (var i = 0; i < n; i++) {
        //Replacing 0's in array with -1
        if (arr[i] == 0)
            arr[i] = -1;
  
        sum += arr[i];
  
        //If sum = 0, it implies number of 0's and 1's are
        //equal from arr[0]..arr[i]
        if (sum == 0)
            count += 1;
  
        if (mp.has(sum) == true)
            count += mp.get(sum);
                 
        if(mp.has(sum) == false)
            mp.set(sum, 1);
        else
            mp.set(sum, mp.get(sum)+1);
    }
      return count;
}
  
// Driver program to test above
var arr = [1, 0, 0, 1, 0, 1, 1];
var n = arr.length;
document.write( "Count = "
      + countSubarrWithEqualZeroAndOne(arr, n));
  
// This code is contributed by noob2000.
</script>

Output:  

Count = 8

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!