Given a number n, we need to count square numbers smaller than or equal to n.
Examples :
Input : n = 5
Output : Square Number : 2
Non-square numbers : 3
Explanation : Square numbers are 1 and 4.
Non square numbers are 2, 3 and 5.
Input : n = 10
Output : Square Number : 3
Non-square numbers : 7
Explanation : Square numbers are 1, 4 and 9.
Non square numbers are 2, 3, 5, 6, 7, 8 and 10.
A simple solution is to traverse through all numbers from 1 to n and for every number check if n is perfect square or not.
An efficient solution is based on below formula.
Count of square numbers that are greater than 0 and smaller than or equal to n are floor(sqrt(n)) or ??(n)?
Count of non-square numbers = n – ??(n)?
C++
#include <bits/stdc++.h>
using namespace std;
void countSquaresNonSquares( int n)
{
int sc = floor ( sqrt (n));
cout << "Count of squares "
<< sc << endl;
cout << "Count of non-squares "
<< n - sc << endl;
}
int main()
{
int n = 10;
countSquaresNonSquares(n);
return 0;
}
|
Java
import java.io.*;
import java.math.*;
class GFG
{
static void countSquaresNonSquares( int n)
{
int sc = ( int )(Math.floor(Math.sqrt(n)));
System.out.println( "Count of" +
" squares " + sc);
System.out.println( "Count of" +
" non-squares " +
(n - sc) );
}
public static void main(String args[])
{
int n = 10 ;
countSquaresNonSquares(n);
}
}
|
Python3
import math
def countSquaresNonSquares(n) :
sc = (math.floor(math.sqrt(n)))
print ( "Count of squares " , sc)
print ( "Count of non-squares " , (n - sc) )
n = 10
countSquaresNonSquares(n)
|
C#
using System;
class GFG
{
static void countSquaresNonSquares( int n)
{
int sc = ( int )Math.Sqrt(n);
Console.WriteLine( "Count of " +
"squares " +
sc) ;
Console.WriteLine( "Count of " +
"non-squares " +
(n - sc));
}
static public void Main ()
{
int n = 10;
countSquaresNonSquares(n);
}
}
|
PHP
<?php
function countSquaresNonSquares( $n )
{
$sc = floor (sqrt( $n ));
echo ( "Count of squares " .
$sc . "\n" );
echo ( "Count of non-squares " .
( $n - $sc ));
}
$n = 10;
countSquaresNonSquares( $n );
?>
|
Javascript
<script>
function countSquaresNonSquares(n)
{
let sc = Math.floor(Math.sqrt(n));
document.write( "Count of squares "
+ sc + "<br>" );
document.write( "Count of non-squares "
+ (n - sc) + "<br>" );
}
let n = 10;
countSquaresNonSquares(n);
</script>
|
Output :
Count of squares 3
Count of non-squares 7
Time Complexity: O(logn)
Auxiliary Space: O(1) as using only constant variables
Approach 2: Using Loops:
Another approach to count the number of squares and non-squares before a given number is to iterate over all the numbers from 1 to n and check if each number is a perfect square or not. If a number is a perfect square, we increment the count of squares, otherwise, we increment the count of non-squares.
Here’s the code implementing this approach:
C++
#include <iostream>
#include <cmath>
void countSquaresNonSquares( int n)
{
int countSquares = 0;
int countNonSquares = 0;
for ( int i = 1; i <= n; i++) {
int sqrtI = std:: sqrt (i);
if (sqrtI * sqrtI == i) {
countSquares++;
} else {
countNonSquares++;
}
}
std::cout << "Count of squares " << countSquares << std::endl;
std::cout << "Count of non-squares " << countNonSquares << std::endl;
}
int main()
{
int n = 10;
countSquaresNonSquares(n);
return 0;
}
|
Java
import java.util.*;
public class Main {
public static void countSquaresNonSquares( int n) {
int countSquares = 0 ;
int countNonSquares = 0 ;
for ( int i = 1 ; i <= n; i++) {
int sqrtI = ( int )Math.sqrt(i);
if (sqrtI * sqrtI == i) {
countSquares++;
} else {
countNonSquares++;
}
}
System.out.println( "Count of squares " + countSquares);
System.out.println( "Count of non-squares " + countNonSquares);
}
public static void main(String[] args) {
int n = 10 ;
countSquaresNonSquares(n);
}
}
|
Python3
import math
def countSquaresNonSquares(n):
countSquares = 0
countNonSquares = 0
for i in range ( 1 , n + 1 ):
sqrtI = int (math.sqrt(i))
if sqrtI * sqrtI = = i:
countSquares + = 1
else :
countNonSquares + = 1
print ( "Count of squares" , countSquares)
print ( "Count of non-squares" , countNonSquares)
n = 10
countSquaresNonSquares(n)
|
C#
using System;
class MainClass {
public static void countSquaresNonSquares( int n) {
int countSquares = 0;
int countNonSquares = 0;
for ( int i = 1; i <= n; i++) {
int sqrtI = ( int )Math.Sqrt(i);
if (sqrtI * sqrtI == i) {
countSquares++;
} else {
countNonSquares++;
}
}
Console.WriteLine( "Count of squares: " + countSquares);
Console.WriteLine( "Count of non-squares: " + countNonSquares);
}
public static void Main() {
int n = 10;
countSquaresNonSquares(n);
}
}
|
Javascript
function countSquaresNonSquares(n) {
let countSquares = 0;
let countNonSquares = 0;
for (let i = 1; i <= n; i++) {
let sqrtI = Math.sqrt(i);
if (sqrtI * sqrtI === i) {
countSquares++;
} else {
countNonSquares++;
}
}
console.log( "Count of squares " + countSquares);
console.log( "Count of non-squares " + countNonSquares);
}
let n = 10;
countSquaresNonSquares(n);
|
Output :
Count of squares 3
Count of non-squares 7
Time Complexity: O(nsqrt(n)), where n is the input variable, as described in the problem statement
Auxiliary Space: O(1) as using only constant variables
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
22 Mar, 2023
Like Article
Save Article