Number of digits before the decimal point in the division of two numbers

Given two integers a and b. The task is to find the number of digits before the decimal point in a / b.

Examples:

Input: a = 100, b = 4
Output: 2
100 / 4 = 25 and number of digits in 25 = 2.



Input: a = 100000, b = 10
Output: 5

Naive approach: Divide the two numbers and then find the number of digits in the division. Take the absolute value of the division for finding the number of digits.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the number of digits
// before the decimal in a / b
int countDigits(int a, int b)
{
    int count = 0;
  
    // Absolute value of a / b
    int p = abs(a / b);
  
    // If result is 0
    if (p == 0)
        return 1;
  
    // Count number of digits in the result
    while (p > 0) {
        count++;
        p = p / 10;
    }
  
    // Return the required count of digits
    return count;
}
  
// Driver code
int main()
{
    int a = 100;
    int b = 10;
    cout << countDigits(a, b);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG {
  
    // Function to return the number of digits
    // before the decimal in a / b
    static int countDigits(int a, int b)
    {
        int count = 0;
  
        // Absolute value of a / b
        int p = Math.abs(a / b);
  
        // If result is 0
        if (p == 0)
            return 1;
  
        // Count number of digits in the result
        while (p > 0) {
            count++;
            p = p / 10;
        }
  
        // Return the required count of digits
        return count;
    }
  
    // Driver code
    public static void main(String args[])
    {
        int a = 100;
        int b = 10;
        System.out.print(countDigits(a, b));
    }
}

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of the approach
  
# Function to return the number of digits 
# before the decimal in a / b
def countDigits(a, b):
    count = 0
      
    # Absolute value of a / b
    p = abs(a // b)
      
    # If result is 0
    if (p == 0):
        return 1
      
    # Count number of digits in the result
    while (p > 0):
        count = count + 1
        p = p // 10
      
      
    # Return the required count of digits
    return count 
  
# Driver code
a = 100
b = 10
print(countDigits(a, b))

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
class GFG {
  
    // Function to return the number of digits
    // before the decimal in a / b
    static int countDigits(int a, int b)
    {
        int count = 0;
  
        // Absolute value of a / b
        int p = Math.Abs(a / b);
  
        // If result is 0
        if (p == 0)
            return 1;
  
        // Count number of digits in the result
        while (p > 0) {
            count++;
            p = p / 10;
        }
  
        // Return the required count of digits
        return count;
    }
  
    // Driver code
    public static void Main()
    {
        int a = 100;
        int b = 10;
        Console.Write(countDigits(a, b));
    }
}

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php 
// PHP implementation of the approach
  
// Function to return the number of digits 
// before the decimal in a / b
function countDigits($a, $b
    $count = 0; 
      
    // Absolute value of a / b
    $p = abs($a / $b); 
      
    // If result is 0
    if ($p == 0) 
        return 1; 
      
    // Count number of digits in the result
    while ($p > 0) { 
        $count++; 
        $p = (int)($p / 10); 
    
      
    // Return the required count of digits
    return $count
  
// Driver code 
$a = 100; 
$b = 10; 
echo countDigits($a, $b); 
?>

chevron_right


Output:

2

Efficient approach: To count the number of digits in a / b, we can use the formula:

floor(log10(a) – log10(b)) + 1

Here both the numbers need to be positive integers. For this we can take the absolute values of a and b.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the number of digits
// before the decimal in a / b
int countDigits(int a, int b)
{
    // Return the required count of digits
    return floor(log10(abs(a)) - log10(abs(b))) + 1;
}
  
// Driver code
int main()
{
    int a = 100;
    int b = 10;
    cout << countDigits(a, b);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG {
  
    // Function to return the number of digits
    // before the decimal in a / b
    public static int countDigits(int a, int b)
    {
        double digits = Math.log10(Math.abs(a))
                        - Math.log10(Math.abs(b)) + 1;
  
        // Return the required count of digits
        return (int)Math.floor(digits);
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int a = 100;
        int b = 10;
        System.out.print(countDigits(a, b));
    }
}

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
import math 
  
# Function to return the number of digits 
# before the decimal in a / b
def countDigits(a, b):
      
    # Return the required count of digits     
    return math.floor(math.log10(abs(a)) -
                math.log10(abs(b))) + 1
  
  
# Driver code
a = 100
b = 10
print(countDigits(a, b))

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
class GFG {
  
    // Function to return the number of digits
    // before the decimal in a / b
    public static int countDigits(int a, int b)
    {
        double digits = Math.Log10(Math.Abs(a))
                        - Math.Log10(Math.Abs(b)) + 1;
  
        // Return the required count of digits
        return (int)Math.Floor(digits);
    }
  
    // Driver code
    static void Main()
    {
        int a = 100;
        int b = 10;
        Console.Write(countDigits(a, b));
    }
}

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php 
// PHP implementation of the approach
  
// Function to return the number of digits 
// before the decimal in a / b
function countDigits($a, $b
      
    // Return the required count of digits
    return floor(log10(abs($a)) - 
                log10(abs($b))) + 1; 
  
// Driver code
$a = 100; 
$b = 10; 
echo countDigits($a, $b);
?> 

chevron_right


Output:

2


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.