# Count ordered pairs of numbers with a given LCM

Given an integer N, the task is to count the total number of ordered pairs such that the LCM of each pair is equal to N.

Examples:

Input: N = 6
Output:
Explanation:
Pairs with LCM equal to N(= 6) are {(1, 6), (2, 6), (2, 3), (3, 6), (6, 6), (6, 3), (3, 2), (6, 2), (6, 1)}
Therefore, the output is 9.

Input: N = 36
Output: 25

Approach: The problem can be solved based on the following observations:

Consider an ordered pair(X, Y).
X = P1a1 * P2a2 * P3a3 *…..* Pnan
Y = P1b1 * P2b2 * P3b3 *…..* Pnbn
Here, P1, P2, ….., Pn are prime factors of X and Y.
LCM(X, Y) = P1max(a1, b1)  * P2max(a2, b2) *……….*Pnmax(an, bn)
Therefore, LCM(X, Y) = N = P1m1 * P2m2 * P3m3 *…..* Pnmn

Therefore, total number of ordered pairs (X, Y)
= [{(m1 + 1)2 – m12} * {(m2 + 1)2 – m22} * ……* {(mn + 1)2 – mn2} ]
= (2*m1+1) * (2*m2+1) * (2*m3+1) * ……..* (2*mn+1).

Follow the steps below to solve the problem:

1. Initialize a variable, say, countPower, to store the power of all prime factors of N.
2. Calculate the power of all prime factors of N.
3. Finally, print the count of ordered pairs(X, Y) using the aforementioned formula.

Below is the implementation of the above approach:

## C++

 `// C++ program to implement ` `// the above approach ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Function to count the number of ` `// ordered pairs with given LCM ` `int` `CtOrderedPairs(``int` `N) ` `{ ` `    ``// Stores count of ` `    ``// ordered pairs ` `    ``int` `res = 1; ` ` `  `    ``// Calculate power of all ` `    ``// prime factors of N ` `    ``for` `(``int` `i = 2; i * i <= N; i++) { ` ` `  `        ``// Store the power of ` `        ``// prime factors ` `        ``int` `countPower = 0; ` `        ``while` `(N % i == 0) { ` `            ``countPower++; ` `            ``N /= i; ` `        ``} ` ` `  `        ``res = res * (2 * countPower ` `                     ``+ 1); ` `    ``} ` ` `  `    ``if` `(N > 1) { ` `        ``res = res * (2 * 1 + 1); ` `    ``} ` `    ``return` `res; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `N = 36; ` `    ``cout << CtOrderedPairs(N); ` `} `

## Java

 `// Java program to implement ` `// the above approach ` ` `  `class` `GFG{ ` `   `  `// Function to count the number of ` `// ordered pairs with given LCM ` `static` `int` `CtOrderedPairs(``int` `N) ` `{ ` `     `  `    ``// Stores count of ` `    ``// ordered pairs ` `    ``int` `res = ``1``; ` ` `  `    ``// Calculate power of all ` `    ``// prime factors of N ` `    ``for``(``int` `i = ``2``; i * i <= N; i++) ` `    ``{ ` `         `  `        ``// Store the power of ` `        ``// prime factors ` `        ``int` `countPower = ``0``; ` `         `  `        ``while` `(N % i == ``0``)  ` `        ``{ ` `            ``countPower++; ` `            ``N /= i; ` `        ``} ` `        ``res = res * (``2` `* countPower + ``1``); ` `    ``} ` ` `  `    ``if` `(N > ``1``) ` `    ``{ ` `        ``res = res * (``2` `* ``1` `+ ``1``); ` `    ``} ` `    ``return` `res; ` `} ` ` `  `// Driver Code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `N = ``36``; ` `     `  `    ``System.out.println(CtOrderedPairs(N)); ` `} ` `} ` ` `  `// This code is contributed by aimformohan`

## Python3

 `# Python3 program to implement ` `# the above approach ` `  `  `# Function to count the number of ` `# ordered pairs with given LCM ` `def` `CtOrderedPairs(N): ` ` `  `    ``# Stores count of ` `    ``# ordered pairs ` `    ``res ``=` `1` `  `  `    ``# Calculate power of all ` `    ``# prime factors of N ` `    ``i ``=` `2`  `    ``while``(i ``*` `i <``=` `N): ` `  `  `        ``# Store the power of ` `        ``# prime factors ` `        ``countPower ``=` `0` `        ``while` `(N ``%` `i ``=``=` `0``): ` `            ``countPower ``+``=` `1` `            ``N ``/``/``=` `i ` `  `  `        ``res ``=` `res ``*` `(``2` `*` `countPower ``+` `1``) ` `        ``i ``+``=` `1` `     `  `    ``if` `(N > ``1``): ` `        ``res ``=` `res ``*` `(``2` `*` `1` `+` `1``) ` `     `  `    ``return` `res ` ` `  `# Driver Code ` `N ``=` `36` ` `  `print``(CtOrderedPairs(N)) ` ` `  `# This code is contributed by code_hunt`

## C#

 `// C# program to implement ` `// the above approach ` `using` `System; ` `  `  `class` `GFG{ ` `    `  `// Function to count the number of ` `// ordered pairs with given LCM ` `static` `int` `CtOrderedPairs(``int` `N) ` `{ ` `     `  `    ``// Stores count of ` `    ``// ordered pairs ` `    ``int` `res = 1; ` `  `  `    ``// Calculate power of all ` `    ``// prime factors of N ` `    ``for``(``int` `i = 2; i * i <= N; i++) ` `    ``{ ` `          `  `        ``// Store the power of ` `        ``// prime factors ` `        ``int` `countPower = 0; ` `          `  `        ``while` `(N % i == 0)  ` `        ``{ ` `            ``countPower++; ` `            ``N /= i; ` `        ``} ` `        ``res = res * (2 * countPower + 1); ` `    ``} ` `  `  `    ``if` `(N > 1) ` `    ``{ ` `        ``res = res * (2 * 1 + 1); ` `    ``} ` `    ``return` `res; ` `} ` `  `  `// Driver Code ` `public` `static` `void` `Main() ` `{ ` `    ``int` `N = 36; ` `      `  `    ``Console.WriteLine(CtOrderedPairs(N)); ` `} ` `} ` ` `  `// This code is contributed by code_hunt `

Output:

```25

```

Time Complexity: O(√N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : aimformohan, code_hunt

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.