Count number of ordered pairs with Even and Odd Sums

Given an array of n positive numbers, the task is to count number of ordered pairs with even and odd sum.

Examples:

Input: arr[] = {1, 2, 4}
Output: Even sum Pairs = 2, Odd sum Pairs = 4
The ordered pairs are (1, 2), (1, 4), (2, 1), (4, 1), (2, 4), (4, 2)
Pairs with Even sum: (2, 4), (4, 2)
Pairs with Odd sum: (1, 2), (1, 4), (2, 1), (4, 1)



Input: arr[] = {2, 4, 5, 9, 1, 8}
Output: Even sum Pairs = 12, Odd sum Pairs = 18

Approach:

The sum of two numbers is odd if one number is odd and other one is be even. So now we have to count the even and odd numbers. As in order pair (a, b) and (b, a) both treated as different pair, therefore

Number of odd sum pairs = (count of even numbers) * (count of odd numbers) * 2

This is because every even number can pair with every odd number, and every odd number can pair with every even number. Thus multiply 2 is done in the answer.

And the number of even sum pairs will be inversion of number of odd sum pairs. Therefore:

Number of even sum pairs = Total Number of pairs – Number of odd sum pairs

Below is the implementation of above approach:

CPP

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
  
// function to count odd sum pair
int count_odd_pair(int n, int a[])
{
    int odd = 0, even = 0;
  
    for (int i = 0; i < n; i++) {
  
        // if number is even
        if (a[i] % 2 == 0)
            even++;
  
        // if number is odd
        else
            odd++;
    }
  
    // count of ordered pairs
    int ans = odd * even * 2;
  
    return ans;
}
  
// function to count even sum pair
int count_even_pair(int odd_sum_pairs, int n)
{
    int total_pairs = (n * (n - 1));
    int ans = total_pairs - odd_sum_pairs;
      
    return ans;
}
  
// Driver code
int main()
{
  
    int n = 6;
    int a[] = { 2, 4, 5, 9, 1, 8 };
  
    int odd_sum_pairs = count_odd_pair(n, a);
  
    int even_sum_pairs = count_even_pair(
        odd_sum_pairs, n);
  
    cout << "Even Sum Pairs = "
         << even_sum_pairs
         << endl;
    cout << "Odd Sum Pairs= "
         << odd_sum_pairs
         << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
  
class GFG
{
    // function to count odd sum pair
    static int count_odd_pair(int n, int a[])
    {
        int odd = 0, even = 0;
      
        for (int i = 0; i < n; i++) {
      
            // if number is even
            if (a[i] % 2 == 0)
                even++;
      
            // if number is odd
            else
                odd++;
        }
      
        // count of ordered pairs
        int ans = odd * even * 2;
      
        return ans;
    }
      
    // function to count even sum pair
    static int count_even_pair(int odd_sum_pairs, int n)
    {
        int total_pairs = (n * (n - 1));
        int ans = total_pairs - odd_sum_pairs;
          
        return ans;
    }
      
    // Driver code
    public static void main(String []args)
    {
      
        int n = 6;
        int []a = { 2, 4, 5, 9, 1, 8 };
      
        int odd_sum_pairs = count_odd_pair(n, a);
      
        int even_sum_pairs = count_even_pair( odd_sum_pairs, n);
      
        System.out.println("Even Sum Pairs = " + even_sum_pairs);
              
        System.out.println("Odd Sum Pairs= " + odd_sum_pairs);
      
          
    }
  
}
  
// This code is contributed by ihritik

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Pytho3 implementation of the above approach
  
# function to count odd sum pair
def count_odd_pair( n,  a):
  
    odd = 0 
    even = 0 
  
    for i in range(0,n): 
  
        # if number is even
        if ( a[ i] % 2 == 0):
             even=even+1
  
        # if number is odd
        else:
             odd=odd+1
      
  
    # count of ordered pairs
    ans =  odd *  even * 2 
  
    return  ans 
  
  
# function to count even sum pair
def count_even_pair( odd_sum_pairs,  n):
  
    total_pairs = ( n * ( n - 1)) 
    ans =  total_pairs -  odd_sum_pairs 
    return ans 
  
  
# Driver code
  
n = 6 
a = [2, 4, 5, 9, 1, 8
  
odd_sum_pairs = count_odd_pair( n,  a) 
  
even_sum_pairs = count_even_pair( odd_sum_pairs,  n) 
  
print("Even Sum Pairs =", even_sum_pairs)
print("Odd Sum Pairs=", odd_sum_pairs)
      
# This code is contributed by ihritik

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
  
using System;
class GFG
{
    // function to count odd sum pair
    static int count_odd_pair(int n, int []a)
    {
        int odd = 0, even = 0;
      
        for (int i = 0; i < n; i++) {
      
            // if number is even
            if (a[i] % 2 == 0)
                even++;
      
            // if number is odd
            else
                odd++;
        }
      
        // count of ordered pairs
        int ans = odd * even * 2;
      
        return ans;
    }
      
    // function to count even sum pair
    static int count_even_pair(int odd_sum_pairs, int n)
    {
        int total_pairs = (n * (n - 1));
        int ans = total_pairs - odd_sum_pairs;
          
        return ans;
    }
      
    // Driver code
    public static void Main()
    {
      
        int n = 6;
        int []a = { 2, 4, 5, 9, 1, 8 };
      
        int odd_sum_pairs = count_odd_pair(n, a);
      
        int even_sum_pairs = count_even_pair( odd_sum_pairs, n);
      
        Console.WriteLine("Even Sum Pairs = " + even_sum_pairs);
              
        Console.WriteLine("Odd Sum Pairs= " + odd_sum_pairs);
         
    }
  
}
  
// This code is contributed by ihritik

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the above approach
  
// function to count odd sum pair
function count_odd_pair($n, $a)
{
    $odd = 0;
    $even = 0;
  
    for ($i = 0; $i < $n; $i++) {
  
        // if number is even
        if ($a[$i] % 2 == 0)
            $even++;
  
        // if number is odd
        else
            $odd++;
    }
  
    // count of ordered pairs
    $ans = $odd * $even * 2;
  
    return $ans;
}
  
// function to count even sum pair
function count_even_pair($odd_sum_pairs, $n)
{
    $total_pairs = ($n * ($n - 1));
    $ans = $total_pairs - $odd_sum_pairs;
    return $ans;
}
  
// Driver code
  
$n = 6;
$a = array( 2, 4, 5, 9, 1, 8 );
  
$odd_sum_pairs = count_odd_pair($n, $a);
  
$even_sum_pairs = count_even_pair($odd_sum_pairs, $n);
  
echo "Even Sum Pairs = $even_sum_pairs \n";
echo "Odd Sum Pairs=  $odd_sum_pairs \n";
      
// This code is contributed by ihritik    
?>

chevron_right


Output:

Even Sum Pairs = 12
Odd Sum Pairs= 18


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : ihritik