Skip to content
Related Articles

Related Articles

Count ordered pairs of positive numbers such that their sum is S and XOR is K
  • Last Updated : 28 Apr, 2021

Given a sum S  and a number K  . The task is to count all possible ordered pairs (a, b) of positive numbers such that the two positive integers a and b have a sum of S and a bitwise-XOR of K.
Examples
 

Input : S = 9, K = 5
Output : 4
The ordered pairs are  (2, 7), (3, 6), (6, 3), (7, 2)

Input : S = 2, K = 2
Output : 0
There are no such ordered pair.

 

Approach: 
For any two integers a  and b
 

Sum S = a + b can be written as S = (a \oplus  b) + (a & b)*2
Where a \oplus  b is the bitwise XOR and a & b is bitwise AND of the two number a and b respectively. 
 

This is because \oplus  is non-carrying binary addition. Thus we can write a & b = (S-K)/2 where S=(a + b) and K = (a 



*** QuickLaTeX cannot compile formula:
 

*** Error message:
Error: Nothing to show, formula is empty

b).
If (S-K) is odd or (S-K) less than 0, 
 

  • then there is no such ordered pair.

Now, for each bit, a&b \in  {0, 1} and (a \oplus  b)\in  {0, 1}.
 

  • If, (a \oplus  b) = 0 then ai = bi, so we have one possibility: ai = bi = (ai & bi).
  • If, (a \oplus  b) = 1 then we must have (ai & bi) = 0 (otherwise the output is 0), and we have two choices: either (ai = 1 and bi = 0) or (ai = 0 and bi = 1).

Where ai is the i-th bit in a and bi is the i-th bit in b.
Thus, the answer is 2{^p}  , where p  is the number of set bits in K. 
We will subtract 2 if S and K are equal because a and b must be positive(>0).
Below is the implementation of the above approach:
 

C++




// C++ program to count ordered pairs of
// positive numbers such that their
// sum is S and XOR is K
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count ordered pairs of
// positive numbers such that their
// sum is S and XOR is K
int countPairs(int s, int K)
{
    // Check if no such pair exists
    if (K > s || (s - K) % 2) {
        return 0;
    }
 
    if ((s - K) / 2 & K) {
        return 0;
    }
 
    // Calculate set bits in K
    int setBits = __builtin_popcount(K);
 
    // Calculate pairs
    int pairsCount = pow(2, setBits);
 
    // If s = k, subtract 2 from result
    if (s == K)
        pairsCount -= 2;
 
    return pairsCount;
}
 
// Driver code
int main()
{
    int s = 9, K = 5;
 
    cout << countPairs(s, K);
 
    return 0;
}

Java




// Java program to count ordered pairs of
// positive numbers such that their
// sum is S and XOR is K
 
class GFG {
 
// Function to count ordered pairs of
// positive numbers such that their
// sum is S and XOR is K
    static int countPairs(int s, int K) {
        // Check if no such pair exists
        if (K > s || (s - K) % 2 ==1) {
            return 0;
        }
 
        if ((s - K) / 2 == 1 & K == 1) {
            return 0;
        }
 
        // Calculate set bits in K
        int setBits = __builtin_popcount(K);
 
        // Calculate pairs
        int pairsCount = (int) Math.pow(2, setBits);
 
        // If s = k, subtract 2 from result
        if (s == K) {
            pairsCount -= 2;
        }
 
        return pairsCount;
    }
 
    static int __builtin_popcount(int n) {
        /* Function to get no of set 
    bits in binary representation 
    of positive integer n */
 
        int count = 0;
        while (n > 0) {
            count += n & 1;
            n >>= 1;
        }
        return count;
    }
 
// Driver program to test above function
    public static void main(String[] args) {
        int s = 9, K = 5;
        System.out.println(countPairs(s, K));
 
    }
 
}

Python3




# Python3 program to count ordered pairs of
# positive numbers such that their
# sum is S and XOR is K
 
# Function to count ordered pairs of
# positive numbers such that their
# sum is S and XOR is K
def countPairs(s,K):
    if(K>s or (s-K)%2==1):
        return 0
         
    # Calculate set bits in k
    setBits=(str(bin(K))[2:]).count("1")
 
    # Calculate pairs
    pairsCount = pow(2,setBits)
 
    # If s = k, subtract 2 from result
    if(s==K):
        pairsCount-=2
 
    return pairsCount
 
# Driver code
if __name__=='__main__':
    s,K=9,5
    print(countPairs(s,K))
 
# This code is contributed by
# Indrajit Sinha.

C#




// C# program to count ordered pairs
// of positive numbers such that their
// sum is S and XOR is K
using System;
                     
class GFG
{
 
// Function to count ordered pairs of
// positive numbers such that their
// sum is S and XOR is K
static int countPairs(int s, int K)
{
    // Check if no such pair exists
    if (K > s || (s - K) % 2 ==1)
    {
        return 0;
    }
 
    if ((s - K) / 2 == 1 & K == 1)
    {
        return 0;
    }
 
    // Calculate set bits in K
    int setBits = __builtin_popcount(K);
 
    // Calculate pairs
    int pairsCount = (int) Math.Pow(2, setBits);
 
    // If s = k, subtract 2 from result
    if (s == K)
    {
        pairsCount -= 2;
    }
 
    return pairsCount;
}
 
static int __builtin_popcount(int n)
{
    /* Function to get no of set
    bits in binary representation
    of positive integer n */
    int count = 0;
    while (n > 0)
    {
        count += n & 1;
        n >>= 1;
    }
    return count;
}
 
// Driver Code
public static void Main()
{
    int s = 9, K = 5;
    Console.Write(countPairs(s, K));
}
}
 
// This code is contributed
// by Rajput-Ji

PHP




<?php
// PHP program to count ordered
// pairs of positive numbers such
// that their sum is S and XOR is K
 
// Function to count ordered pairs of
// positive numbers such that their
// sum is S and XOR is K
function countPairs($s, $K)
{
    // Check if no such pair exists
    if ($K > $s || ($s - $K) % 2 == 1)
    {
        return 0;
    }
 
    if (($s - $K) / 2 == 1 & $K == 1)
    {
        return 0;
    }
 
    // Calculate set bits in K
    $setBits = __builtin_popcount($K);
 
    // Calculate pairs
    $pairsCount = (int)pow(2, $setBits);
 
    // If s = k, subtract 2 from result
    if ($s == $K)
    {
        $pairsCount -= 2;
    }
 
    return $pairsCount;
}
 
function __builtin_popcount($n)
{
    /* Function to get no of set
    bits in binary representation
    of positive integer n */
    $count = 0;
    while ($n > 0)
    {
        $count += $n & 1;
        $n >>= 1;
    }
    return $count;
}
 
// Driver Code
$s = 9; $K = 5;
echo countPairs($s, $K) . "\n";
 
// This code is contributed
// by Akanksha Rai

Javascript




<script>
 
// Javascript program to count ordered pairs of
// positive numbers such that their
// sum is S and XOR is K
 
// Function to count ordered pairs of
// positive numbers such that their
// sum is S and XOR is K
function countPairs(s, K)
{
    // Check if no such pair exists
    if (K > s || (s - K) % 2) {
        return 0;
    }
 
    if (parseInt((s - K) / 2) & K) {
        return 0;
    }
 
    // Calculate set bits in K
    let setBits = __builtin_popcount(K);
 
    // Calculate pairs
    let pairsCount = Math.pow(2, setBits);
 
    // If s = k, subtract 2 from result
    if (s == K)
        pairsCount -= 2;
 
    return pairsCount;
}
 
function __builtin_popcount(n)
{
    /* Function to get no of set
    bits in binary representation
    of positive integer n */
    let count = 0;
    while (n > 0)
    {
        count += n & 1;
        n >>= 1;
    }
    return count;
}
 
// Driver code
    let s = 9, K = 5;
 
    document.write(countPairs(s, K));
 
</script>
Output: 
4

 

Time Complexity: O(log(K))
 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :