Given an array **arr[]** positive integers, the task is to find the number of ways to convert the array sum even if we are allowed to remove only one element.**Examples:**

Input:arr[] = { 1, 3, 3, 2 }Output:3Explanation:

1. Remove 1, then sum is 3 + 3 + 2 = 8.

2. Remove 3, then sum is 1 + 3 + 2 = 6.

3. Remove 3, then sum is 1 + 3 + 2 = 6.

Input:arr[] = { 4, 8, 3, 3, 6 }Output:3Explanation:

1. Remove 4, then sum is 8 + 3 + 3 + 6 = 20.

2. Remove 8, then sum is 4 + 3 + 3 + 6 = 16.

3. Remove 6, then sum is 4 + 8 + 3 + 3 = 18.

**Approach:** The key observation to the above problem statement is:

- If we have an odd number of odd elements then the sum is always odd then we have to remove one odd number from the array
**arr[]**to make the sum even. Since we have to remove one element, therefore, the total number of ways of making the sum even is the**count of odd elements**in the array**arr[]**. - If we have an even number of odd elements then the sum is always even. Since we have to remove one element to make the sum even, therefore, the total number of ways of making the sum even is the
**count of even elements**in the array**arr[]**

Below is the implementation of the above approach:

## C++

`// C++ program for the above approach ` `#include<bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to find a number of ways ` `// to make array element sum even by ` `// removing one element ` `int` `find_num_of_ways(` `int` `arr[], ` `int` `N) ` `{ ` ` ` `int` `count_even = 0, count_odd = 0; ` ` ` ` ` `// Finding the count of even ` ` ` `// and odd elements ` ` ` `for` `(` `int` `i = 0; i < N; i++) { ` ` ` `if` `(arr[i] % 2) { ` ` ` `count_odd++; ` ` ` `} ` ` ` `else` `{ ` ` ` `count_even++; ` ` ` `} ` ` ` `} ` ` ` ` ` `// If count_odd is odd then ` ` ` `// no. of ways is count_odd ` ` ` `if` `(count_odd % 2) { ` ` ` `return` `count_odd; ` ` ` `} ` ` ` ` ` `// Else no. of ways is count_even ` ` ` `else` `{ ` ` ` `return` `count_even; ` ` ` `} ` `} ` ` ` `// Driver Code ` `int` `main() ` `{ ` ` ` ` ` `// Given array arr[] ` ` ` `int` `arr[] = { 1, 3, 3, 2 }; ` ` ` `int` `N = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]); ` ` ` ` ` `// Function Call ` ` ` `cout << find_num_of_ways(arr, N); ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java program for the above approach ` `import` `java.util.*; ` ` ` `class` `GFG{ ` ` ` `// Function to find a number of ways ` `// to make array element sum even by ` `// removing one element ` `static` `int` `find_num_of_ways(` `int` `arr[], ` `int` `N) ` `{ ` ` ` `int` `count_even = ` `0` `, count_odd = ` `0` `; ` ` ` ` ` `// Finding the count of even ` ` ` `// and odd elements ` ` ` `for` `(` `int` `i = ` `0` `; i < N; i++) ` ` ` `{ ` ` ` `if` `(arr[i] % ` `2` `== ` `1` `) ` ` ` `{ ` ` ` `count_odd++; ` ` ` `} ` ` ` `else` ` ` `{ ` ` ` `count_even++; ` ` ` `} ` ` ` `} ` ` ` ` ` `// If count_odd is odd then ` ` ` `// no. of ways is count_odd ` ` ` `if` `(count_odd % ` `2` `== ` `1` `) ` ` ` `{ ` ` ` `return` `count_odd; ` ` ` `} ` ` ` ` ` `// Else no. of ways is count_even ` ` ` `else` ` ` `{ ` ` ` `return` `count_even; ` ` ` `} ` `} ` ` ` `// Driver Code ` `public` `static` `void` `main (String[] args) ` `{ ` ` ` ` ` `// Given array arr[] ` ` ` `int` `arr[] = { ` `1` `, ` `3` `, ` `3` `, ` `2` `}; ` ` ` `int` `N = ` `4` `; ` ` ` ` ` `// Function call ` ` ` `System.out.print(find_num_of_ways(arr, N)); ` `} ` `} ` ` ` `// This code is contributed by Ritik Bansal ` |

*chevron_right*

*filter_none*

## Python3

`# Python3 program for the above approach ` ` ` `# Function to find a number of ways ` `# to make array element sum even by ` `# removing one element ` `def` `find_num_of_ways(arr, N): ` ` ` ` ` `count_even ` `=` `0` ` ` `count_odd ` `=` `0` ` ` ` ` `# Finding the count of even ` ` ` `# and odd elements ` ` ` `for` `i ` `in` `range` `(N): ` ` ` `if` `(arr[i] ` `%` `2` `): ` ` ` `count_odd ` `+` `=` `1` ` ` `else` `: ` ` ` `count_even ` `+` `=` `1` ` ` ` ` `# If count_odd is odd then ` ` ` `# no. of ways is count_odd ` ` ` `if` `(count_odd ` `%` `2` `): ` ` ` `return` `count_odd ` ` ` ` ` `# Else no. of ways is count_even ` ` ` `else` `: ` ` ` `return` `count_even ` ` ` `# Driver Code ` `if` `__name__ ` `=` `=` `'__main__'` `: ` ` ` ` ` `# Given array arr[] ` ` ` `arr ` `=` `[ ` `1` `, ` `3` `, ` `3` `, ` `2` `] ` ` ` `N ` `=` `len` `(arr) ` ` ` ` ` `# Function call ` ` ` `print` `(find_num_of_ways(arr, N)) ` ` ` `# This code is contributed by mohit kumar 29` |

*chevron_right*

*filter_none*

## C#

`// C# program for the above approach ` `using` `System; ` `class` `GFG{ ` ` ` `// Function to find a number of ways ` `// to make array element sum even by ` `// removing one element ` `static` `int` `find_num_of_ways(` `int` `[]arr, ` `int` `N) ` `{ ` ` ` `int` `count_even = 0, count_odd = 0; ` ` ` ` ` `// Finding the count of even ` ` ` `// and odd elements ` ` ` `for` `(` `int` `i = 0; i < N; i++) ` ` ` `{ ` ` ` `if` `(arr[i] % 2 == 1) ` ` ` `{ ` ` ` `count_odd++; ` ` ` `} ` ` ` `else` ` ` `{ ` ` ` `count_even++; ` ` ` `} ` ` ` `} ` ` ` ` ` `// If count_odd is odd then ` ` ` `// no. of ways is count_odd ` ` ` `if` `(count_odd % 2 == 1) ` ` ` `{ ` ` ` `return` `count_odd; ` ` ` `} ` ` ` ` ` `// Else no. of ways is count_even ` ` ` `else` ` ` `{ ` ` ` `return` `count_even; ` ` ` `} ` `} ` ` ` `// Driver Code ` `public` `static` `void` `Main(` `string` `[] args) ` `{ ` ` ` ` ` `// Given array arr[] ` ` ` `int` `[]arr = { 1, 3, 3, 2 }; ` ` ` `int` `N = 4; ` ` ` ` ` `// Function call ` ` ` `Console.Write(find_num_of_ways(arr, N)); ` `} ` `} ` ` ` `// This code is contributed by Rutvik` |

*chevron_right*

*filter_none*

**Output:**

3

**Time Complexity:** *O(N)* **Auxiliary Space:** *O(1)*

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.