Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Count of vessels completely filled after a given time

  • Difficulty Level : Expert
  • Last Updated : 14 Jun, 2021

Given two integers N and T denoting the number of levels and the number of seconds respectively, the task is to find the number of completely filled vessels after T seconds under given conditions:
 

  • A structure of vessels of N levels is such that the number of the vessels at each level is equal to the level number i.e 1, 2, 3, … up to N.
  • Each vessel can store a maximum of 1 unit of water and in every second 1 unit water is poured out from a tap at a constant rate.
  • If the vessel becomes full, then water starts flowing out of it, and pours over the edges of the vessel, and is equally distributed over the two connected vessels immediately below it.

Assumptions:

  1. All the objects are arranged symmetrically along the horizontal axis.
  2. All levels are equally spaced.
  3. Water flows symmetrically over both the edges of the vessel.

Examples:

Input: N = 3, T = 2
Output: 1
Explanation:
View of Structure with N = 3 and at a time T = 2 after the tap has been opened



Input: N = 3, T = 4
Output: 3
Explanation:
View of Structure with N = 3 and at a time T = 4 after the tap has been opened

Naive Approach: The simplest approach to solve the problem is to check if it is possible to completely fill x vessels in T seconds or not. If found to be true, check for x+1 vessels and repeat so on to obtain the maximum value of x.
Time Complexity: O(N3)
Auxiliary Space: O(1)
 

Efficient Approach: The above approach can be optimized using Dynamic Programming. Follow the steps below to solve the problem:

  1. Store the vessel structure in a Matrix, say M, where M[i][j] denotes the jth vessel in the ith level.
  2. For any vessel M[i][j], the connected vessels at an immediately lower level are M[i + 1][j] and M[i + 1][j + 1].
  3. Initially, put all water in the first vessel i, e. M[0][0] = t.
  4. Recalculate the state of the matrix at every increment of unit time, starting from the topmost vessel i, e. M[0][0] = t.
  5. If the amount of water exceeds the volume of the vessel, the amount flowing down from a vessel is split into 2 equal
  6. parts filling the two connected vessels at immediately lower level.

C++




// C++ program to implement 
// the above approach 
#include <bits/stdc++.h> 
using namespace std; 
   
int n, t;
   
// Function to find the number of
// completely filled vessels
int FindNoOfFullVessels(int n, int t)
{
       
    // Store the vessels
    double Matrix[n][n];
   
    // Assuming all water is present
    // in the vessel at the first level
    Matrix[0][0] = t * 1.0;
   
    // Store the number of vessel
    // that are completely full
    int ans = 0;
   
    // Traverse all the levels
    for(int i = 0; i < n; i++)
    {
           
        // Number of vessel at each
        // level is j
        for(int j = 0; j <= i; j++)
        {
               
            // Calculate the exceeded
            // amount of water
            double exceededwater = Matrix[i][j] - 1.0;
   
            // If current vessel has
            // less than 1 unit of
            // water then continue
            if (exceededwater < 0)
                continue;
   
            // One more vessel is full
            ans++;
   
            // If left bottom vessel present
            if (i + 1 < n)
                Matrix[i + 1][j] += exceededwater / 2;
   
            // If right bottom vessel present
            if (i + 1 < n && j + 1 < n)
                Matrix[i + 1][j + 1] += exceededwater / 2;
        }
    }
    return ans;
}
   
// Driver Code
int main()
{
       
    // Number of levels
    int N = 3;
   
    // Number of seconds
    int T = 4;
   
    // Function call
    cout << FindNoOfFullVessels(N, T) << endl;
       
    return 0;
}
   
// This code is contributed by sanjoy_62

Java




// Java Program to implement
// the above approach
   
import java.io.*;
import java.util.*;
   
class GFG {
   
    static int n, t;
   
    // Function to find the number of
    // completely filled vessels
    public static int
    FindNoOfFullVessels(int n, int t)
    {
        // Store the vessels
        double Matrix[][]
            = new double[n][n];
   
        // Assuming all water is present
        // in the vessel at the first level
        Matrix[0][0] = t * 1.0;
   
        // Store the number of vessel
        // that are completely full
        int ans = 0;
   
        // Traverse all the levels
        for (int i = 0; i < n; i++) {
   
            // Number of vessel at each
            // level is j
            for (int j = 0; j <= i; j++) {
   
                // Calculate the exceeded
                // amount of water
                double exceededwater
                    = Matrix[i][j] - 1.0;
   
                // If current vessel has
                // less than 1 unit of
                // water then continue
                if (exceededwater < 0)
                    continue;
   
                // One more vessel is full
                ans++;
   
                // If left bottom vessel present
                if (i + 1 < n)
                    Matrix[i + 1][j]
                        += exceededwater / 2;
   
                // If right bottom vessel present
                if (i + 1 < n && j + 1 < n)
                    Matrix[i + 1][j + 1]
                        += exceededwater / 2;
            }
        }
   
        return ans;
    }
   
    // Driver Code
    public static void main(String[] args)
    {
        // Number of levels
        int N = 3;
   
        // Number of seconds
        int T = 4;
   
        // Function call
        System.out.println(
            FindNoOfFullVessels(N, T));
    }
}

Python3




# Python3 program to implement    
# the above approach    
      
# Function to find the number of    
# completely filled vessels    
def FindNoOfFullVessels(n, t) :    
         
    # Store the vessels    
    Matrix = [[0 for i in range(n)] for j in range(n)]   
      
    # Assuming all water is present    
    # in the vessel at the first level    
    Matrix[0][0] = t * 1.0    
      
    # Store the number of vessel    
    # that are completely full    
    ans = 0    
      
    # Traverse all the levels    
    for i in range(n) :   
             
        # Number of vessel at each    
        # level is j    
        for j in range(i + 1) :   
                 
            # Calculate the exceeded    
            # amount of water    
            exceededwater = Matrix[i][j] - 1.0    
      
            # If current vessel has    
            # less than 1 unit of    
            # water then continue    
            if (exceededwater < 0) :   
                continue   
      
            # One more vessel is full    
            ans += 1    
      
            # If left bottom vessel present    
            if (i + 1 < n) :    
                Matrix[i + 1][j] += exceededwater / 2   
      
            # If right bottom vessel present    
            if (i + 1 < n and j + 1 < n) :   
                Matrix[i + 1][j + 1] += exceededwater / 2    
    return ans   
      
         
# Number of levels    
N = 3   
      
# Number of seconds    
T = 4   
      
# Function call    
print(FindNoOfFullVessels(N, T))
 
# This code is contributed by divyesh072019

C#




// C# program to implement 
// the above approach 
using System; 
   
class GFG{
   
//static int n, t;
   
// Function to find the number of
// completely filled vessels
public static int FindNoOfFullVessels(int n, 
                                      int t)
{
       
    // Store the vessels
    double[,] Matrix = new double[n, n];
   
    // Assuming all water is present
    // in the vessel at the first level
    Matrix[0, 0] = t * 1.0;
   
    // Store the number of vessel
    // that are completely full
    int ans = 0;
   
    // Traverse all the levels
    for(int i = 0; i < n; i++)
    {
   
        // Number of vessel at each
        // level is j
        for(int j = 0; j <= i; j++) 
        {
   
            // Calculate the exceeded
            // amount of water
            double exceededwater = Matrix[i, j] - 1.0;
   
            // If current vessel has
            // less than 1 unit of
            // water then continue
            if (exceededwater < 0)
                continue;
   
            // One more vessel is full
            ans++;
   
            // If left bottom vessel present
            if (i + 1 < n)
                Matrix[i + 1, j] += exceededwater / 2;
   
            // If right bottom vessel present
            if (i + 1 < n && j + 1 < n)
                Matrix[i + 1, j + 1] += exceededwater / 2;
        }
    }
    return ans;
}
   
// Driver Code
public static void Main()
{
       
    // Number of levels
    int N = 3;
   
    // Number of seconds
    int T = 4;
   
    // Function call
    Console.WriteLine(FindNoOfFullVessels(N, T));
}
}
   
// This code is contributed by sanjoy_62

Javascript




<script>
 
// JavaScript program to implement 
// the above approach 
   
var n, t;
   
// Function to find the number of
// completely filled vessels
function FindNoOfFullVessels(n, t)
{
       
    // Store the vessels
    var Matrix = Array.from(Array(n), ()=> Array(n).fill(0));
   
    // Assuming all water is present
    // in the vessel at the first level
    Matrix[0][0] = t * 1.0;
   
    // Store the number of vessel
    // that are completely full
    var ans = 0;
   
    // Traverse all the levels
    for(var i = 0; i < n; i++)
    {
           
        // Number of vessel at each
        // level is j
        for(var j = 0; j <= i; j++)
        {
               
            // Calculate the exceeded
            // amount of water
            var exceededwater = Matrix[i][j] - 1;
   
            // If current vessel has
            // less than 1 unit of
            // water then continue
            if (exceededwater < 0)
                continue;
   
            // One more vessel is full
            ans++;
   
            // If left bottom vessel present
            if (i + 1 < n)
                Matrix[i + 1][j] += (exceededwater / 2);
   
            // If right bottom vessel present
            if (i + 1 < n && j + 1 < n)
                Matrix[i + 1][j + 1] += (exceededwater / 2);
        }
    }
    return ans;
}
   
// Driver Code
// Number of levels
var N = 3;
 
// Number of seconds
var T = 4;
 
// Function call
document.write( FindNoOfFullVessels(N, T));
 
 
</script>

Output: 

3

Time complexity: O(N2)
Space Complexity: O(N2)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :