Given an array arr[] of size N, the task is to find the count of subarrays of at least length 2, such that the difference between the consecutive elements of those subarrays remains the same throughout i.e. the elements of the subarray forms an AP.
Examples:
Input: arr[] = {8, 7, 4, 1, 0}
Output: 5
Explanation:
All subarrays of size greater than 1 which form an AP are [8, 7], [7, 4], [4, 1], [1, 0], [7, 4, 1]Input: arr[] = {4, 2}
Output: 1
Approach: The idea is to generate all possible subarrays from the given array and for each subarray, check if the difference between adjacent elements is the same or not for the generated subarrays. Below are the steps:
- Iterate over each subarray of length at least 2 using two loops.
- Let i be the start index of the subarray and j be the end index of the subarray.
- If the difference between every adjacent pair of elements of the array from index i to j is the same then increment the total count.
- Otherwise, repeat the above process with the next subarray.
Below is the implementation of the above approach:
C++
// C++ implementation of // the above approach #include <iostream> using namespace std; // Function to find the // total count of subarrays int calcSubarray( int A[], int N) { int count = 0; // Iterate over each subarray for ( int i = 0; i < N; i++) { for ( int j = i + 1; j < N; j++) { bool flag = true ; // Difference between first // two terms of subarray int comm_diff = A[i + 1] - A[i]; // Iterate over the subarray // from i to j for ( int k = i; k < j; k++) { // Check if the difference // of all adjacent elements // is same if (A[k + 1] - A[k] == comm_diff) { continue ; } else { flag = false ; break ; } } if (flag) { count++; } } } return count; } // Driver Code int main() { // Given array int A[5] = { 8, 7, 4, 1, 0 }; int N = sizeof (A) / sizeof ( int ); // Function Call cout << calcSubarray(A, N); } |
Java
// Java implementation of // the above approach import java.util.*; class GFG{ // Function to find the // total count of subarrays static int calcSubarray( int A[], int N) { int count = 0 ; // Iterate over each subarray for ( int i = 0 ; i < N; i++) { for ( int j = i + 1 ; j < N; j++) { boolean flag = true ; // Difference between first // two terms of subarray int comm_diff = A[i + 1 ] - A[i]; // Iterate over the subarray // from i to j for ( int k = i; k < j; k++) { // Check if the difference // of all adjacent elements // is same if (A[k + 1 ] - A[k] == comm_diff) { continue ; } else { flag = false ; break ; } } if (flag) { count++; } } } return count; } // Driver Code public static void main(String[] args) { // Given array int []A = { 8 , 7 , 4 , 1 , 0 }; int N = A.length; // Function Call System.out.print(calcSubarray(A, N)); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of # the above approach # Function to find the # total count of subarrays def calcSubarray(A, N): count = 0 # Iterate over each subarray for i in range (N): for j in range (i + 1 , N): flag = True # Difference between first # two terms of subarray comm_diff = A[i + 1 ] - A[i] # Iterate over the subarray # from i to j for k in range (i, j): # Check if the difference # of all adjacent elements # is same if (A[k + 1 ] - A[k] = = comm_diff): continue else : flag = False break if (flag): count + = 1 return count # Driver Code if __name__ = = '__main__' : # Given array A = [ 8 , 7 , 4 , 1 , 0 ] N = len (A) # Function call print (calcSubarray(A, N)) # This code is contributed by mohit kumar 29 |
C#
// C# implementation of // the above approach using System; class GFG{ // Function to find the // total count of subarrays static int calcSubarray( int []A, int N) { int count = 0; // Iterate over each subarray for ( int i = 0; i < N; i++) { for ( int j = i + 1; j < N; j++) { bool flag = true ; // Difference between first // two terms of subarray int comm_diff = A[i + 1] - A[i]; // Iterate over the subarray // from i to j for ( int k = i; k < j; k++) { // Check if the difference // of all adjacent elements // is same if (A[k + 1] - A[k] == comm_diff) { continue ; } else { flag = false ; break ; } } if (flag) { count++; } } } return count; } // Driver Code public static void Main(String[] args) { // Given array int []A = {8, 7, 4, 1, 0}; int N = A.Length; // Function Call Console.Write(calcSubarray(A, N)); } } // This code is contributed by 29AjayKumar |
5
Time Complexity: O(N3)
Auxiliary Space: O(1)
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.