# Count of squares that can be drawn without lifting the pencil

Given an integer **N**, the task is to find the count of squares of side **1** that can be drawn without lifting the pencil, starting at one corner of an **N * N** grid and never visiting an edge twice.

Input:N = 2Output:2

Input:N = 3Output:5

**Approach:** It can be observed that for the values of **N = 1, 2, 3, …**, a series will be formed as **1, 2, 5, 10, 17, 26, 37, 50, …** whose **N ^{th}** term is

**(N**

^{2}– (2 * N) + 2)Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to return the count of` `// squares that can be formed` `int` `countSquares(` `int` `n)` `{` ` ` `return` `(` `pow` `(n, 2) - (2 * n) + 2);` `}` `// Driver code` `int` `main()` `{` ` ` `int` `n = 2;` ` ` `cout << countSquares(n);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the approach` `class` `GFG` `{` `// Function to return the count of` `// squares that can be formed` `static` `int` `countSquares(` `int` `n)` `{` ` ` `return` `(` `int` `) (Math.pow(n, ` `2` `) - (` `2` `* n) + ` `2` `);` `}` `// Driver code` `public` `static` `void` `main(String []args)` `{` ` ` `int` `n = ` `2` `;` ` ` `System.out.println(countSquares(n));` `}` `}` `// This code is contributed by Rajput-Ji` |

## Python3

`# Python3 implementation of the approach` `# Function to return the count of` `# squares that can be formed` `def` `countSquares(n) :` ` ` `return` `(` `pow` `(n, ` `2` `) ` `-` `(` `2` `*` `n) ` `+` `2` `);` `# Driver code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` `n ` `=` `2` `;` ` ` `print` `(countSquares(n));` `# This code is contributed by AnkitRai01` |

## C#

`// C# implementation of the approach` `using` `System;` ` ` `class` `GFG` `{` ` ` `// Function to return the count of` ` ` `// squares that can be formed` ` ` `static` `int` `countSquares(` `int` `n)` ` ` `{` ` ` `return` `(` `int` `) (Math.Pow(n, 2) - (2 * n) + 2);` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `Main(String []args)` ` ` `{` ` ` `int` `n = 2;` ` ` `Console.WriteLine(countSquares(n));` ` ` `}` `}` `// This code is contributed by 29AjayKumar` |

## Javascript

`<script>` `// Javascript implementation of the approach` `// Function to return the count of` `// squares that can be formed` `function` `countSquares(n)` `{` ` ` `return` `(Math.pow(n, 2) - (2 * n) + 2);` `}` `// Driver code` `var` `n = 2;` `document.write(countSquares(n));` `</script>` |

**Output:**

2

**Time Complexity:** O(1)