First element greater than or equal to X in prefix sum of N numbers using Binary Lifting

Given an array of N integers and a number X. The task is to find the index of first element which is greater than or equal to X in prefix sums of N numbers.

Examples:

Input: arr[] = { 2, 5, 7, 1, 6, 9, 12, 4, 6 } and x = 8
Output: 2
prefix sum array formed is { 2, 7, 14, 15, 21, 30, 42, 46, 52}, hence 14 is the number whose index is 2



Input: arr[] = { 2, 5, 7, 1, 6, 9, 12, 4, 6 } and x = 30
Output: 5

Approach: The problem can be solved using lower_bound function in Binary search. But in this post, the problem will be solved using Binary-Lifting. In binary lifting, a value is increased (or lifted) by powers of 2, starting with the highest possible power of 2(log(N)) down to the lowest power(0).

  • initialize position = 0 and set each bit of position, from most significant bit to least significant bit.
  • whenever a bit is set to 1, the value of position increases (or lifts).
  • while increasing or lifting position, make sure that prefix sum till position should be less than v.
  • here, log(N) bits are needed for all possible values of ‘position’ ( from log(N)th to 0th bit ).
  • determine the value of the i-th bit. First, check if setting the i-th bit won’t make ‘position’ greater than N, which is the size of the array. Before lifting to the new ‘position’, check that value at that new ‘position’ is less than X or not.
  • if this condition is true, then target position lies above the ‘position’ + 2^i, but below the ‘position’ + 2^(i+1). This is because if target position was above ‘position’ + 2^(i+1), then the position would have been already lifted by 2^(i+1) (this logic is similar to binary lifting in trees).
  • if it is false, then target value lies between ‘position’ and ‘position’ + 2^i, so try to lift by a lower power of 2. Finally loop will end such that value at that position is less than X. Here, in this question, the lower bound is asked. so, return ‘position’ + 1.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find lower_bound of x in
// prefix sums array using binary lifting.
#include <bits/stdc++.h>
using namespace std;
  
// function to make prefix sums array
void MakePreSum(int arr[], int presum[], int n)
{
    presum[0] = arr[0];
    for (int i = 1; i < n; i++)
        presum[i] = presum[i - 1] + arr[i];
}
  
// function to find lower_bound of x in
// prefix sums array using binary lifting.
int BinaryLifting(int presum[], int n, int x)
{
    // intisalize position
    int pos = 0;
  
    // find log to the base 2 value of n.
    int LOGN = log2(n);
  
    // if x less than first number.
    if (x <= presum[0])
        return 0;
  
    // starting from most significant bit.
    for (int i = LOGN; i >= 0; i--) {
  
        // if value at this position less
        // than x then updateposition
        // Here (1<<i) is similar to 2^i.
        if (pos + (1 << i) < n && 
            presum[pos + (1 << i)] < x) {
            pos += (1 << i);
        }
    }
  
    // +1 because 'pos' will have position
    // of largest value less than 'x'
    return pos + 1;
}
  
// Driver code
int main()
{
    // given array
    int arr[] = { 2, 5, 7, 1, 6, 9, 12, 4, 6 };
  
    // value to find
    int x = 8;
  
    // size of array
    int n = sizeof(arr) / sizeof(arr[0]);
  
    // to store prefix sum
    int presum[n] = { 0 };
  
    // call for prefix sum
    MakePreSum(arr, presum, n);
  
    // fucntion call
    cout << BinaryLifting(presum, n, x);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find lower_bound of x in
// prefix sums array using binary lifting.
import java.util.*;
  
class solution
{
  
// function to make prefix sums array
static void MakePreSum(int []arr, int []presum, int n)
{
    presum[0] = arr[0];
    for (int i = 1; i < n; i++)
        presum[i] = presum[i - 1] + arr[i];
}
  
// function to find lower_bound of x in
// prefix sums array using binary lifting.
static int BinaryLifting(int []presum, int n, int x)
{
    // intisalize position
    int pos = 0;
  
    // find log to the base 2 value of n.
    int LOGN = (int)Math.log(n);
  
    // if x less than first number.
    if (x <= presum[0])
        return 0;
  
    // starting from most significant bit.
    for (int i = LOGN; i >= 0; i--) {
  
        // if value at this position less
        // than x then updateposition
        // Here (1<<i) is similar to 2^i.
        if (pos + (1 << i) < n && 
            presum[pos + (1 << i)] < x) {
            pos += (1 << i);
        }
    }
  
    // +1 because 'pos' will have position
    // of largest value less than 'x'
    return pos + 1;
}
  
// Driver code
public static void main(String args[])
{
    // given array
    int []arr = { 2, 5, 7, 1, 6, 9, 12, 4, 6 };
  
    // value to find
    int x = 8;
  
    // size of array
    int n = arr.length;
  
    // to store prefix sum
    int []presum = new int[n];
    Arrays.fill(presum,0);
  
    // call for prefix sum
    MakePreSum(arr, presum, n);
  
    // fucntion call
    System.out.println(BinaryLifting(presum, n, x));
  
}
  
}

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find 
# lower_bound of x in prefix 
# sums array using binary lifting.
import math
  
# function to make prefix 
# sums array
def MakePreSum( arr, presum, n):
  
    presum[0] = arr[0]
    for i in range(1, n):
        presum[i] = presum[i - 1] + arr[i]
  
# function to find lower_bound of x in
# prefix sums array using binary lifting.
def BinaryLifting(presum, n, x):
  
    # intisalize position
    pos = 0
  
    # find log to the base 2 
    # value of n.
    LOGN = int(math.log2(n))
  
    # if x less than first number.
    if (x <= presum[0]):
        return 0
  
    # starting from most significant bit.
    for i in range(LOGN, -1, -1) :
  
        # if value at this position less
        # than x then updateposition
        # Here (1<<i) is similar to 2^i.
        if (pos + (1 << i) < n and
            presum[pos + (1 << i)] < x) :
            pos += (1 << i)
  
    # +1 because 'pos' will have position
    # of largest value less than 'x'
    return pos + 1
  
# Driver code
if __name__ == "__main__":
      
    # given array
    arr = [ 2, 5, 7, 1, 6
            9, 12, 4, 6 ]
  
    # value to find
    x = 8
  
    # size of array
    n = len(arr)
  
    # to store prefix sum
    presum = [0] * n
  
    # call for prefix sum
    MakePreSum(arr, presum, n)
  
    # fucntion call
    print(BinaryLifting(presum, n, x))
  
# This code is contributed
# by ChitraNayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find lower_bound of x in
// prefix sums array using binary lifting.
using System;
  
class GFG
{
  
    // function to make prefix sums array
    static void MakePreSum(int []arr, 
                    int []presum, int n)
    {
        presum[0] = arr[0];
        for (int i = 1; i < n; i++)
            presum[i] = presum[i - 1] + arr[i];
    }
  
    // function to find lower_bound of x in
    // prefix sums array using binary lifting.
    static int BinaryLifting(int []presum,
                            int n, int x)
    {
        // intisalize position
        int pos = 0;
  
        // find log to the base 2 value of n.
        int LOGN = (int)Math.Log(n);
  
        // if x less than first number.
        if (x <= presum[0])
            return 0;
  
        // starting from most significant bit.
        for (int i = LOGN; i >= 0; i--)
        {
  
            // if value at this position less
            // than x then updateposition
            // Here (1<<i) is similar to 2^i.
            if (pos + (1 << i) < n && 
                presum[pos + (1 << i)] < x) 
            {
                pos += (1 << i);
            }
        }
  
        // +1 because 'pos' will have position
        // of largest value less than 'x'
        return pos + 1;
    }
  
    // Driver code
    public static void Main()
    {
        // given array
        int []arr = { 2, 5, 7, 1, 6, 9, 12, 4, 6 };
  
        // value to find
        int x = 8;
  
        // size of array
        int n = arr.Length;
  
        // to store prefix sum
        int []presum = new int[n];
  
        // call for prefix sum
        MakePreSum(arr, presum, n);
  
        // fucntion call
        Console.WriteLine(BinaryLifting(presum, n, x));
    }
}
  
// This code has been contributed
// by PrinciRaj1992 
  

chevron_right


Output:

2


Time Complexity:
O(N)
Auxiliary Space: O(N)



My Personal Notes arrow_drop_up

pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.