Given two integers ‘n’ and ‘sum’, find count of all n digit numbers with sum of digits as ‘sum’. Leading 0’s are not counted as digits.
Constrains:
1 <= n <= 100 and
1 <= sum <= 500
Example:
Input: n = 2, sum = 2
Output: 2
Explanation: Numbers are 11 and 20
Input: n = 2, sum = 5
Output: 5
Explanation: Numbers are 14, 23, 32, 41 and 50
Input: n = 3, sum = 6
Output: 21
Naive approach:
The idea is simple, we subtract all values from 0 to 9 from given sum and recur for sum minus that digit. Below is recursive formula.
countRec(n, sum) = ∑countRec(n-1, sum-x)
where 0 =< x = 0
One important observation is, leading 0's must be
handled explicitly as they are not counted as digits.
So our final count can be written as below.
finalCount(n, sum) = ∑countRec(n-1, sum-x)
where 1 =< x = 0
Below is a simple recursive solution based on above recursive formula.
C++
#include<bits/stdc++.h>
using namespace std;
unsigned long long int countRec( int n, int sum)
{
if (n == 0)
return sum == 0;
if (sum == 0)
return 1;
unsigned long long int ans = 0;
for ( int i=0; i<=9; i++)
if (sum-i >= 0)
ans += countRec(n-1, sum-i);
return ans;
}
unsigned long long int finalCount( int n, int sum)
{
unsigned long long int ans = 0;
for ( int i = 1; i <= 9; i++)
if (sum-i >= 0)
ans += countRec(n-1, sum-i);
return ans;
}
int main()
{
int n = 2, sum = 5;
cout << finalCount(n, sum);
return 0;
}
|
Java
import java.io.*;
public class sum_dig
{
static int countRec( int n, int sum)
{
if (n == 0 )
return sum == 0 ? 1 : 0 ;
if (sum == 0 )
return 1 ;
int ans = 0 ;
for ( int i= 0 ; i<= 9 ; i++)
if (sum-i >= 0 )
ans += countRec(n- 1 , sum-i);
return ans;
}
static int finalCount( int n, int sum)
{
int ans = 0 ;
for ( int i = 1 ; i <= 9 ; i++)
if (sum-i >= 0 )
ans += countRec(n- 1 , sum-i);
return ans;
}
public static void main (String args[])
{
int n = 2 , sum = 5 ;
System.out.println(finalCount(n, sum));
}
}
|
Python3
def countRec(n, sum ) :
if (n = = 0 ) :
return ( sum = = 0 )
if ( sum = = 0 ) :
return 1
ans = 0
for i in range ( 0 , 10 ) :
if ( sum - i > = 0 ) :
ans = ans + countRec(n - 1 , sum - i)
return ans
def finalCount(n, sum ) :
ans = 0
for i in range ( 1 , 10 ) :
if ( sum - i > = 0 ) :
ans = ans + countRec(n - 1 , sum - i)
return ans
n = 2
sum = 5
print (finalCount(n, sum ))
|
C#
using System;
class GFG {
static int countRec( int n, int sum)
{
if (n == 0)
return sum == 0 ? 1 : 0;
if (sum == 0)
return 1;
int ans = 0;
for ( int i = 0; i <= 9; i++)
if (sum - i >= 0)
ans += countRec(n - 1, sum - i);
return ans;
}
static int finalCount( int n, int sum)
{
int ans = 0;
for ( int i = 1; i <= 9; i++)
if (sum - i >= 0)
ans += countRec(n - 1, sum - i);
return ans;
}
public static void Main ()
{
int n = 2, sum = 5;
Console.Write(finalCount(n, sum));
}
}
|
Javascript
<script>
function countRec(n, sum) {
if (n == 0)
return sum == 0;
if (sum == 0)
return 1;
let ans = 0;
for (let i = 0; i <= 9; i++) {
if (sum - i >= 0)
ans += countRec(n - 1, sum - i);
}
return ans;
}
function finalCount(n, sum) {
let ans = 0;
for (let i = 1; i <= 9; i++) {
if (sum - i >= 0)
ans += countRec(n - 1, sum - i);
}
return ans;
}
let n = 2, sum = 5;
document.write(finalCount(n, sum));
</script>
|
PHP
<?php
function countRec( $n , $sum )
{
if ( $n == 0)
return $sum == 0;
if ( $sum == 0)
return 1;
$ans = 0;
for ( $i = 0; $i <= 9; $i ++)
if ( $sum - $i >= 0)
$ans += countRec( $n -1, $sum - $i );
return $ans ;
}
function finalCount( $n , $sum )
{
$ans = 0;
for ( $i = 1; $i <= 9; $i ++)
if ( $sum - $i >= 0)
$ans += countRec( $n - 1, $sum - $i );
return $ans ;
}
$n = 2;
$sum = 5;
echo finalCount( $n , $sum );
?>
|
Time Complexity: O(2n)
Auxiliary Space: O(n)
Approach using Memoization:
C++
#include<bits/stdc++.h>
using namespace std;
unsigned long long int lookup[101][501];
unsigned long long int countRec( int n, int sum)
{
if (n == 0)
return sum == 0;
if (lookup[n][sum] != -1)
return lookup[n][sum];
unsigned long long int ans = 0;
for ( int i=0; i<10; i++)
if (sum-i >= 0)
ans += countRec(n-1, sum-i);
return lookup[n][sum] = ans;
}
unsigned long long int finalCount( int n, int sum)
{
memset (lookup, -1, sizeof lookup);
unsigned long long int ans = 0;
for ( int i = 1; i <= 9; i++)
if (sum-i >= 0)
ans += countRec(n-1, sum-i);
return ans;
}
int main()
{
int n = 3, sum = 5;
cout << finalCount(n, sum);
return 0;
}
|
Java
import java.io.*;
public class sum_dig
{
static int lookup[][] = new int [ 101 ][ 501 ];
static int countRec( int n, int sum)
{
if (n == 0 )
return sum == 0 ? 1 : 0 ;
if (lookup[n][sum] != - 1 )
return lookup[n][sum];
int ans = 0 ;
for ( int i= 0 ; i< 10 ; i++)
if (sum-i >= 0 )
ans += countRec(n- 1 , sum-i);
return lookup[n][sum] = ans;
}
static int finalCount( int n, int sum)
{
for ( int i = 0 ; i <= 100 ; ++i){
for ( int j = 0 ; j <= 500 ; ++j){
lookup[i][j] = - 1 ;
}
}
int ans = 0 ;
for ( int i = 1 ; i <= 9 ; i++)
if (sum-i >= 0 )
ans += countRec(n- 1 , sum-i);
return ans;
}
public static void main (String args[])
{
int n = 3 , sum = 5 ;
System.out.println(finalCount(n, sum));
}
}
|
Python3
lookup = [[ - 1 for i in range ( 501 )]
for i in range ( 101 )]
def countRec(n, Sum ):
if (n = = 0 ):
return Sum = = 0
if (lookup[n][ Sum ] ! = - 1 ):
return lookup[n][ Sum ]
ans = 0
for i in range ( 10 ):
if ( Sum - i > = 0 ):
ans + = countRec(n - 1 , Sum - i)
lookup[n][ Sum ] = ans
return lookup[n][ Sum ]
def finalCount(n, Sum ):
ans = 0
for i in range ( 1 , 10 ):
if ( Sum - i > = 0 ):
ans + = countRec(n - 1 , Sum - i)
return ans
n, Sum = 3 , 5
print (finalCount(n, Sum ))
|
C#
using System;
class sum_dig
{
static int [,]lookup = new int [101,501];
static int countRec( int n, int sum)
{
if (n == 0)
return sum == 0 ? 1 : 0;
if (lookup[n,sum] != -1)
return lookup[n,sum];
int ans = 0;
for ( int i=0; i<10; i++)
if (sum-i >= 0)
ans += countRec(n-1, sum-i);
return lookup[n,sum] = ans;
}
static int finalCount( int n, int sum)
{
for ( int i = 0; i <= 100; ++i){
for ( int j = 0; j <= 500; ++j){
lookup[i,j] = -1;
}
}
int ans = 0;
for ( int i = 1; i <= 9; i++)
if (sum-i >= 0)
ans += countRec(n-1, sum-i);
return ans;
}
public static void Main ()
{
int n = 3, sum = 5;
Console.Write(finalCount(n, sum));
}
}
|
Javascript
<script>
let lookup = new Array(101);
function countRec(n, sum)
{
if (n == 0)
return sum == 0 ? 1 : 0;
if (lookup[n][sum] != -1)
return lookup[n][sum];
let ans = 0;
for (let i = 0; i < 10; i++)
if (sum - i >= 0)
ans += countRec(n - 1, sum - i);
return lookup[n][sum] = ans;
}
function finalCount(n, sum)
{
for (let i = 0; i < 101; i++)
{
lookup[i] = new Array(501);
for (let j = 0; j < 501; j++)
{
lookup[i][j] = -1;
}
}
let ans = 0;
for (let i = 1; i <= 9; i++)
if (sum - i >= 0)
ans += countRec(n - 1, sum - i);
return ans;
}
let n = 3, sum = 5;
document.write(finalCount(n, sum));
</script>
|
PHP
<?php
$lookup = array_fill (0, 101,
array_fill (0, 501, -1));
function countRec( $n , $sum )
{
global $lookup ;
if ( $n == 0)
return $sum == 0;
if ( $lookup [ $n ][ $sum ] != -1)
return $lookup [ $n ][ $sum ];
$ans = 0;
for ( $i = 0; $i < 10; $i ++)
if ( $sum - $i >= 0)
$ans += countRec( $n - 1, $sum - $i );
return $lookup [ $n ][ $sum ] = $ans ;
}
function finalCount( $n , $sum )
{
$ans = 0;
for ( $i = 1; $i <= 9; $i ++)
if ( $sum - $i >= 0)
$ans += countRec( $n - 1, $sum - $i );
return $ans ;
}
$n = 3;
$sum = 5;
echo finalCount( $n , $sum );
?>
|
Time Complexity: O(n*sum)
Auxiliary Space: O(101*501)
Another Method: We can easily count n digit numbers whose sum of digit equals to given sum by iterating all n digits and checking if current n digit number’s sum is equal to given sum, if it is then we will start increment number by 9 until it reaches to number whose sum of digit’s is greater than given sum, then again we will increment by 1 until we found another number with given sum.
C++
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
void findCount( int n, int sum) {
int start = pow (10, n-1);
int end = pow (10, n)-1;
int count = 0;
int i = start;
while (i <= end) {
int cur = 0;
int temp = i;
while ( temp != 0) {
cur += temp % 10;
temp = temp / 10;
}
if (cur == sum) {
count++;
i += 9;
} else
i++;
}
cout << count;
}
int main() {
int n = 3;
int sum = 5;
findCount(n,sum);
return 0;
}
|
Java
import java.io.*;
public class GFG {
public static void main(String[] args) {
int n = 3 ;
int sum = 5 ;
findCount(n,sum);
}
private static void findCount( int n, int sum) {
int start = ( int ) Math.pow( 10 , n- 1 );
int end = ( int ) Math.pow( 10 , n)- 1 ;
int count = 0 ;
int i = start;
while (i < end) {
int cur = 0 ;
int temp = i;
while ( temp != 0 ) {
cur += temp % 10 ;
temp = temp / 10 ;
}
if (cur == sum) {
count++;
i += 9 ;
} else
i++;
}
System.out.println(count);
}
}
|
Python3
import math
def findCount(n, sum ):
start = math. pow ( 10 , n - 1 );
end = math. pow ( 10 , n) - 1 ;
count = 0 ;
i = start;
while (i < = end):
cur = 0 ;
temp = i;
while (temp ! = 0 ):
cur + = temp % 10 ;
temp = temp / / 10 ;
if (cur = = sum ):
count = count + 1 ;
i + = 9 ;
else :
i = i + 1 ;
print (count);
n = 3 ;
sum = 5 ;
findCount(n, sum );
|
C#
using System;
class GFG
{
private static void findCount( int n,
int sum)
{
int start = ( int ) Math.Pow(10, n - 1);
int end = ( int ) Math.Pow(10, n) - 1;
int count = 0;
int i = start;
while (i < end)
{
int cur = 0;
int temp = i;
while ( temp != 0)
{
cur += temp % 10;
temp = temp / 10;
}
if (cur == sum)
{
count++;
i += 9;
}
else
i++;
}
Console.WriteLine(count);
}
public static void Main()
{
int n = 3;
int sum = 5;
findCount(n,sum);
}
}
|
Javascript
<script>
function findCount(n, sum) {
let start = Math.pow(10, n-1);
let end = Math.pow(10, n)-1;
let count = 0;
let i = start;
while (i <= end)
{
let cur = 0;
let temp = i;
while ( temp != 0)
{
cur += temp % 10;
temp = parseInt(temp / 10);
}
if (cur == sum)
{
count++;
i += 9;
} else
i++;
}
document.write(count);
}
let n = 3;
let sum = 5;
findCount(n,sum);
</script>
|
PHP
<?php
function findCount( $n , $sum )
{
$start = (int)pow(10, $n - 1);
$end = (int)pow(10, $n ) - 1;
$count = 0;
$i = $start ;
while ( $i < $end )
{
$cur = 0;
$temp = $i ;
while ( $temp != 0)
{
$cur += $temp % 10;
$temp = (int) $temp / 10;
}
if ( $cur == $sum )
{
$count ++;
$i += 9;
}
else
$i ++;
}
echo ( $count );
}
$n = 3;
$sum = 5;
findCount( $n , $sum );
?>
|
Time Complexity: O(log n)
Auxiliary Space: O(1)
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
10 Aug, 2023
Like Article
Save Article