Given two integers ‘n’ and ‘sum’, find count of all n digit numbers with sum of digits as ‘sum’. Leading 0’s are not counted as digits.
Constrains:
1 <= n <= 100 and
1 <= sum <= 500
Example:
Input: n = 2, sum = 2
Output: 2
Explanation: Numbers are 11 and 20
Input: n = 2, sum = 5
Output: 5
Explanation: Numbers are 14, 23, 32, 41 and 50
Input: n = 3, sum = 6
Output: 21
Naive approach:
The idea is simple, we subtract all values from 0 to 9 from given sum and recur for sum minus that digit. Below is recursive formula.
countRec(n, sum) = ∑countRec(n-1, sum-x)
where 0 =< x = 0
One important observation is, leading 0's must be
handled explicitly as they are not counted as digits.
So our final count can be written as below.
finalCount(n, sum) = ∑countRec(n-1, sum-x)
where 1 =< x = 0
Below is a simple recursive solution based on above recursive formula.
C++
#include<bits/stdc++.h>
using namespace std;
unsigned long long int countRec( int n, int sum)
{
if (n == 0)
return sum == 0;
if (sum == 0)
return 1;
unsigned long long int ans = 0;
for ( int i=0; i<=9; i++)
if (sum-i >= 0)
ans += countRec(n-1, sum-i);
return ans;
}
unsigned long long int finalCount( int n, int sum)
{
unsigned long long int ans = 0;
for ( int i = 1; i <= 9; i++)
if (sum-i >= 0)
ans += countRec(n-1, sum-i);
return ans;
}
int main()
{
int n = 2, sum = 5;
cout << finalCount(n, sum);
return 0;
}
|
Java
import java.io.*;
public class sum_dig
{
static int countRec( int n, int sum)
{
if (n == 0 )
return sum == 0 ? 1 : 0 ;
if (sum == 0 )
return 1 ;
int ans = 0 ;
for ( int i= 0 ; i<= 9 ; i++)
if (sum-i >= 0 )
ans += countRec(n- 1 , sum-i);
return ans;
}
static int finalCount( int n, int sum)
{
int ans = 0 ;
for ( int i = 1 ; i <= 9 ; i++)
if (sum-i >= 0 )
ans += countRec(n- 1 , sum-i);
return ans;
}
public static void main (String args[])
{
int n = 2 , sum = 5 ;
System.out.println(finalCount(n, sum));
}
}
|
Python3
def countRec(n, sum ) :
if (n = = 0 ) :
return ( sum = = 0 )
if ( sum = = 0 ) :
return 1
ans = 0
for i in range ( 0 , 10 ) :
if ( sum - i > = 0 ) :
ans = ans + countRec(n - 1 , sum - i)
return ans
def finalCount(n, sum ) :
ans = 0
for i in range ( 1 , 10 ) :
if ( sum - i > = 0 ) :
ans = ans + countRec(n - 1 , sum - i)
return ans
n = 2
sum = 5
print (finalCount(n, sum ))
|
C#
using System;
class GFG {
static int countRec( int n, int sum)
{
if (n == 0)
return sum == 0 ? 1 : 0;
if (sum == 0)
return 1;
int ans = 0;
for ( int i = 0; i <= 9; i++)
if (sum - i >= 0)
ans += countRec(n - 1, sum - i);
return ans;
}
static int finalCount( int n, int sum)
{
int ans = 0;
for ( int i = 1; i <= 9; i++)
if (sum - i >= 0)
ans += countRec(n - 1, sum - i);
return ans;
}
public static void Main ()
{
int n = 2, sum = 5;
Console.Write(finalCount(n, sum));
}
}
|
Javascript
<script>
function countRec(n, sum) {
if (n == 0)
return sum == 0;
if (sum == 0)
return 1;
let ans = 0;
for (let i = 0; i <= 9; i++) {
if (sum - i >= 0)
ans += countRec(n - 1, sum - i);
}
return ans;
}
function finalCount(n, sum) {
let ans = 0;
for (let i = 1; i <= 9; i++) {
if (sum - i >= 0)
ans += countRec(n - 1, sum - i);
}
return ans;
}
let n = 2, sum = 5;
document.write(finalCount(n, sum));
</script>
|
PHP
<?php
function countRec( $n , $sum )
{
if ( $n == 0)
return $sum == 0;
if ( $sum == 0)
return 1;
$ans = 0;
for ( $i = 0; $i <= 9; $i ++)
if ( $sum - $i >= 0)
$ans += countRec( $n -1, $sum - $i );
return $ans ;
}
function finalCount( $n , $sum )
{
$ans = 0;
for ( $i = 1; $i <= 9; $i ++)
if ( $sum - $i >= 0)
$ans += countRec( $n - 1, $sum - $i );
return $ans ;
}
$n = 2;
$sum = 5;
echo finalCount( $n , $sum );
?>
|
Time Complexity: O(2n)
Auxiliary Space: O(n)
Approach using Memoization:
C++
#include<bits/stdc++.h>
using namespace std;
unsigned long long int lookup[101][501];
unsigned long long int countRec( int n, int sum)
{
if (n == 0)
return sum == 0;
if (lookup[n][sum] != -1)
return lookup[n][sum];
unsigned long long int ans = 0;
for ( int i=0; i<10; i++)
if (sum-i >= 0)
ans += countRec(n-1, sum-i);
return lookup[n][sum] = ans;
}
unsigned long long int finalCount( int n, int sum)
{
memset (lookup, -1, sizeof lookup);
unsigned long long int ans = 0;
for ( int i = 1; i <= 9; i++)
if (sum-i >= 0)
ans += countRec(n-1, sum-i);
return ans;
}
int main()
{
int n = 3, sum = 5;
cout << finalCount(n, sum);
return 0;
}
|
Java
import java.io.*;
public class sum_dig
{
static int lookup[][] = new int [ 101 ][ 501 ];
static int countRec( int n, int sum)
{
if (n == 0 )
return sum == 0 ? 1 : 0 ;
if (lookup[n][sum] != - 1 )
return lookup[n][sum];
int ans = 0 ;
for ( int i= 0 ; i< 10 ; i++)
if (sum-i >= 0 )
ans += countRec(n- 1 , sum-i);
return lookup[n][sum] = ans;
}
static int finalCount( int n, int sum)
{
for ( int i = 0 ; i <= 100 ; ++i){
for ( int j = 0 ; j <= 500 ; ++j){
lookup[i][j] = - 1 ;
}
}
int ans = 0 ;
for ( int i = 1 ; i <= 9 ; i++)
if (sum-i >= 0 )
ans += countRec(n- 1 , sum-i);
return ans;
}
public static void main (String args[])
{
int n = 3 , sum = 5 ;
System.out.println(finalCount(n, sum));
}
}
|
Python3
lookup = [[ - 1 for i in range ( 501 )]
for i in range ( 101 )]
def countRec(n, Sum ):
if (n = = 0 ):
return Sum = = 0
if (lookup[n][ Sum ] ! = - 1 ):
return lookup[n][ Sum ]
ans = 0
for i in range ( 10 ):
if ( Sum - i > = 0 ):
ans + = countRec(n - 1 , Sum - i)
lookup[n][ Sum ] = ans
return lookup[n][ Sum ]
def finalCount(n, Sum ):
ans = 0
for i in range ( 1 , 10 ):
if ( Sum - i > = 0 ):
ans + = countRec(n - 1 , Sum - i)
return ans
n, Sum = 3 , 5
print (finalCount(n, Sum ))
|
C#
using System;
class sum_dig
{
static int [,]lookup = new int [101,501];
static int countRec( int n, int sum)
{
if (n == 0)
return sum == 0 ? 1 : 0;
if (lookup[n,sum] != -1)
return lookup[n,sum];
int ans = 0;
for ( int i=0; i<10; i++)
if (sum-i >= 0)
ans += countRec(n-1, sum-i);
return lookup[n,sum] = ans;
}
static int finalCount( int n, int sum)
{
for ( int i = 0; i <= 100; ++i){
for ( int j = 0; j <= 500; ++j){
lookup[i,j] = -1;
}
}
int ans = 0;
for ( int i = 1; i <= 9; i++)
if (sum-i >= 0)
ans += countRec(n-1, sum-i);
return ans;
}
public static void Main ()
{
int n = 3, sum = 5;
Console.Write(finalCount(n, sum));
}
}
|
Javascript
<script>
let lookup = new Array(101);
function countRec(n, sum)
{
if (n == 0)
return sum == 0 ? 1 : 0;
if (lookup[n][sum] != -1)
return lookup[n][sum];
let ans = 0;
for (let i = 0; i < 10; i++)
if (sum - i >= 0)
ans += countRec(n - 1, sum - i);
return lookup[n][sum] = ans;
}
function finalCount(n, sum)
{
for (let i = 0; i < 101; i++)
{
lookup[i] = new Array(501);
for (let j = 0; j < 501; j++)
{
lookup[i][j] = -1;
}
}
let ans = 0;
for (let i = 1; i <= 9; i++)
if (sum - i >= 0)
ans += countRec(n - 1, sum - i);
return ans;
}
let n = 3, sum = 5;
document.write(finalCount(n, sum));
</script>
|
PHP
<?php
$lookup = array_fill (0, 101,
array_fill (0, 501, -1));
function countRec( $n , $sum )
{
global $lookup ;
if ( $n == 0)
return $sum == 0;
if ( $lookup [ $n ][ $sum ] != -1)
return $lookup [ $n ][ $sum ];
$ans = 0;
for ( $i = 0; $i < 10; $i ++)
if ( $sum - $i >= 0)
$ans += countRec( $n - 1, $sum - $i );
return $lookup [ $n ][ $sum ] = $ans ;
}
function finalCount( $n , $sum )
{
$ans = 0;
for ( $i = 1; $i <= 9; $i ++)
if ( $sum - $i >= 0)
$ans += countRec( $n - 1, $sum - $i );
return $ans ;
}
$n = 3;
$sum = 5;
echo finalCount( $n , $sum );
?>
|
Time Complexity: O(n*sum)
Auxiliary Space: O(101*501)
Another Method: We can easily count n digit numbers whose sum of digit equals to given sum by iterating all n digits and checking if current n digit number’s sum is equal to given sum, if it is then we will start increment number by 9 until it reaches to number whose sum of digit’s is greater than given sum, then again we will increment by 1 until we found another number with given sum.
C++
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
void findCount( int n, int sum) {
int start = pow (10, n-1);
int end = pow (10, n)-1;
int count = 0;
int i = start;
while (i <= end) {
int cur = 0;
int temp = i;
while ( temp != 0) {
cur += temp % 10;
temp = temp / 10;
}
if (cur == sum) {
count++;
i += 9;
} else
i++;
}
cout << count;
}
int main() {
int n = 3;
int sum = 5;
findCount(n,sum);
return 0;
}
|
Java
import java.io.*;
public class GFG {
public static void main(String[] args) {
int n = 3 ;
int sum = 5 ;
findCount(n,sum);
}
private static void findCount( int n, int sum) {
int start = ( int ) Math.pow( 10 , n- 1 );
int end = ( int ) Math.pow( 10 , n)- 1 ;
int count = 0 ;
int i = start;
while (i < end) {
int cur = 0 ;
int temp = i;
while ( temp != 0 ) {
cur += temp % 10 ;
temp = temp / 10 ;
}
if (cur == sum) {
count++;
i += 9 ;
} else
i++;
}
System.out.println(count);
}
}
|
Python3
import math
def findCount(n, sum ):
start = math. pow ( 10 , n - 1 );
end = math. pow ( 10 , n) - 1 ;
count = 0 ;
i = start;
while (i < = end):
cur = 0 ;
temp = i;
while (temp ! = 0 ):
cur + = temp % 10 ;
temp = temp / / 10 ;
if (cur = = sum ):
count = count + 1 ;
i + = 9 ;
else :
i = i + 1 ;
print (count);
n = 3 ;
sum = 5 ;
findCount(n, sum );
|
C#
using System;
class GFG
{
private static void findCount( int n,
int sum)
{
int start = ( int ) Math.Pow(10, n - 1);
int end = ( int ) Math.Pow(10, n) - 1;
int count = 0;
int i = start;
while (i < end)
{
int cur = 0;
int temp = i;
while ( temp != 0)
{
cur += temp % 10;
temp = temp / 10;
}
if (cur == sum)
{
count++;
i += 9;
}
else
i++;
}
Console.WriteLine(count);
}
public static void Main()
{
int n = 3;
int sum = 5;
findCount(n,sum);
}
}
|
Javascript
<script>
function findCount(n, sum) {
let start = Math.pow(10, n-1);
let end = Math.pow(10, n)-1;
let count = 0;
let i = start;
while (i <= end)
{
let cur = 0;
let temp = i;
while ( temp != 0)
{
cur += temp % 10;
temp = parseInt(temp / 10);
}
if (cur == sum)
{
count++;
i += 9;
} else
i++;
}
document.write(count);
}
let n = 3;
let sum = 5;
findCount(n,sum);
</script>
|
PHP
<?php
function findCount( $n , $sum )
{
$start = (int)pow(10, $n - 1);
$end = (int)pow(10, $n ) - 1;
$count = 0;
$i = $start ;
while ( $i < $end )
{
$cur = 0;
$temp = $i ;
while ( $temp != 0)
{
$cur += $temp % 10;
$temp = (int) $temp / 10;
}
if ( $cur == $sum )
{
$count ++;
$i += 9;
}
else
$i ++;
}
echo ( $count );
}
$n = 3;
$sum = 5;
findCount( $n , $sum );
?>
|
Time Complexity: O(log n)
Auxiliary Space: O(1)
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above