Skip to content
Related Articles

Related Articles

Improve Article
Count of N digit numbers possible which satisfy the given conditions
  • Last Updated : 07 May, 2021

Given an integer N, the Task is to find the total number of N digit numbers possible such that: 
 

  1. All the digits of the numbers are from the range [0, N].
  2. There are no leading 0s.
  3. All the digits in a number are distinct.

Examples: 
 

Input: N = 2 
Output:
10, 12, 20 and 21 are the only possible 2 digit 
numbers which satisfy the given conditions.
Input: N = 5 
Output: 600 
 

 

Approach: Given N number of digit and the first place can be filled in N ways [0 cannot be taken as the first digit and the allowed digits are from the range [1, N]
Remaining (N – 1) places can be filled in N! ways 
So, total count of number possible will be N * N!.
Take an example for better understanding. Say, N = 8 
 



n=8

First place can be filled with any digit from [1, 8] and the remaining 7 places can be filled in 8! ways i.e 8 * 7 * 6 * 5 * 4 * 3 * 2. 
So, total ways = 8 * 8! = 8 * 8 * 7 * 6 * 5 * 4 * 3 * 2 = 322560
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the factorial of n
int fact(int n)
{
    int res = 1;
    for (int i = 2; i <= n; i++)
        res = res * i;
    return res;
}
 
// Function to return the
// count of numbers possible
int Count_number(int N)
{
    return (N * fact(N));
}
 
// Driver code
int main()
{
    int N = 2;
 
    cout << Count_number(N);
 
    return 0;
}

Java




// Java implementation of the approach
import java.io.*;
 
class GFG
{
 
// Function to return the factorial of n
static int fact(int n)
{
    int res = 1;
    for (int i = 2; i <= n; i++)
        res = res * i;
    return res;
}
 
// Function to return the
// count of numbers possible
static int Count_number(int N)
{
    return (N * fact(N));
}
 
// Driver code
public static void main (String[] args)
{
    int N = 2;
 
    System.out.print(Count_number(N));
}
}
 
// This code is contributed by anuj_67..

Python3




# Python3 implementation of the approach
 
# Function to return the factorial of n
def fact(n):
 
    res = 1
    for i in range(2, n + 1):
        res = res * i
    return res
 
# Function to return the
# count of numbers possible
def Count_number(N):
    return (N * fact(N))
 
# Driver code
N = 2
 
print(Count_number(N))
 
# This code is contributed by Mohit Kumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the factorial of n
static int fact(int n)
{
    int res = 1;
    for (int i = 2; i <= n; i++)
        res = res * i;
    return res;
}
 
// Function to return the
// count of numbers possible
static int Count_number(int N)
{
    return (N * fact(N));
}
 
// Driver code
public static void Main ()
{
    int N = 2;
 
    Console.WriteLine(Count_number(N));
}
}
 
// This code is contributed by anuj_67..

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the factorial of n
function fact(n)
{
    let res = 1;
    for (let i = 2; i <= n; i++)
        res = res * i;
    return res;
}
 
// Function to return the
// count of numbers possible
function Count_number(N)
{
    return (N * fact(N));
}
 
// Driver code
    let N = 2;
 
    document.write(Count_number(N));
 
</script>
Output: 
4

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :