Given an integer N, the Task is to find the total number of N digit numbers possible such that:
- All the digits of the numbers are from the range [0, N].
- There are no leading 0s.
- All the digits in a number are distinct.
Examples:
Input: N = 2
Output: 4
10, 12, 20 and 21 are the only possible 2 digit
numbers which satisfy the given conditions.
Input: N = 5
Output: 600
Approach: Given N number of digit and the first place can be filled in N ways [0 cannot be taken as the first digit and the allowed digits are from the range [1, N]]
Remaining (N – 1) places can be filled in N! ways
So, total count of number possible will be N * N!.
Take an example for better understanding. Say, N = 8

First place can be filled with any digit from [1, 8] and the remaining 7 places can be filled in 8! ways i.e 8 * 7 * 6 * 5 * 4 * 3 * 2.
So, total ways = 8 * 8! = 8 * 8 * 7 * 6 * 5 * 4 * 3 * 2 = 322560
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int fact( int n)
{
int res = 1;
for ( int i = 2; i <= n; i++)
res = res * i;
return res;
}
int Count_number( int N)
{
return (N * fact(N));
}
int main()
{
int N = 2;
cout << Count_number(N);
return 0;
}
|
Java
import java.io.*;
class GFG
{
static int fact( int n)
{
int res = 1 ;
for ( int i = 2 ; i <= n; i++)
res = res * i;
return res;
}
static int Count_number( int N)
{
return (N * fact(N));
}
public static void main (String[] args)
{
int N = 2 ;
System.out.print(Count_number(N));
}
}
|
Python3
def fact(n):
res = 1
for i in range ( 2 , n + 1 ):
res = res * i
return res
def Count_number(N):
return (N * fact(N))
N = 2
print (Count_number(N))
|
C#
using System;
class GFG
{
static int fact( int n)
{
int res = 1;
for ( int i = 2; i <= n; i++)
res = res * i;
return res;
}
static int Count_number( int N)
{
return (N * fact(N));
}
public static void Main ()
{
int N = 2;
Console.WriteLine(Count_number(N));
}
}
|
Javascript
<script>
function fact(n)
{
let res = 1;
for (let i = 2; i <= n; i++)
res = res * i;
return res;
}
function Count_number(N)
{
return (N * fact(N));
}
let N = 2;
document.write(Count_number(N));
</script>
|
Time Complexity: O(n)
Auxiliary Space: O(1)