Skip to content
Related Articles
Count of N digit numbers possible which satisfy the given conditions
• Last Updated : 07 May, 2021

Given an integer N, the Task is to find the total number of N digit numbers possible such that:

1. All the digits of the numbers are from the range [0, N].
2. There are no leading 0s.
3. All the digits in a number are distinct.

Examples:

Input: N = 2
Output:
10, 12, 20 and 21 are the only possible 2 digit
numbers which satisfy the given conditions.
Input: N = 5
Output: 600

Approach: Given N number of digit and the first place can be filled in N ways [0 cannot be taken as the first digit and the allowed digits are from the range [1, N]
Remaining (N – 1) places can be filled in N! ways
So, total count of number possible will be N * N!.
Take an example for better understanding. Say, N = 8 First place can be filled with any digit from [1, 8] and the remaining 7 places can be filled in 8! ways i.e 8 * 7 * 6 * 5 * 4 * 3 * 2.
So, total ways = 8 * 8! = 8 * 8 * 7 * 6 * 5 * 4 * 3 * 2 = 322560
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to return the factorial of n``int` `fact(``int` `n)``{``    ``int` `res = 1;``    ``for` `(``int` `i = 2; i <= n; i++)``        ``res = res * i;``    ``return` `res;``}` `// Function to return the``// count of numbers possible``int` `Count_number(``int` `N)``{``    ``return` `(N * fact(N));``}` `// Driver code``int` `main()``{``    ``int` `N = 2;` `    ``cout << Count_number(N);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``import` `java.io.*;` `class` `GFG``{` `// Function to return the factorial of n``static` `int` `fact(``int` `n)``{``    ``int` `res = ``1``;``    ``for` `(``int` `i = ``2``; i <= n; i++)``        ``res = res * i;``    ``return` `res;``}` `// Function to return the``// count of numbers possible``static` `int` `Count_number(``int` `N)``{``    ``return` `(N * fact(N));``}` `// Driver code``public` `static` `void` `main (String[] args)``{``    ``int` `N = ``2``;` `    ``System.out.print(Count_number(N));``}``}` `// This code is contributed by anuj_67..`

## Python3

 `# Python3 implementation of the approach` `# Function to return the factorial of n``def` `fact(n):` `    ``res ``=` `1``    ``for` `i ``in` `range``(``2``, n ``+` `1``):``        ``res ``=` `res ``*` `i``    ``return` `res` `# Function to return the``# count of numbers possible``def` `Count_number(N):``    ``return` `(N ``*` `fact(N))` `# Driver code``N ``=` `2` `print``(Count_number(N))` `# This code is contributed by Mohit Kumar`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG``{` `// Function to return the factorial of n``static` `int` `fact(``int` `n)``{``    ``int` `res = 1;``    ``for` `(``int` `i = 2; i <= n; i++)``        ``res = res * i;``    ``return` `res;``}` `// Function to return the``// count of numbers possible``static` `int` `Count_number(``int` `N)``{``    ``return` `(N * fact(N));``}` `// Driver code``public` `static` `void` `Main ()``{``    ``int` `N = 2;` `    ``Console.WriteLine(Count_number(N));``}``}` `// This code is contributed by anuj_67..`

## Javascript

 ``
Output:
`4`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes

My Personal Notes arrow_drop_up