Count of triplets in an array that satisfy the given conditions
Given an array arr[] of N elements, the task is to find the count of triplets (arr[i], arr[j], arr[k]) such that (arr[i] + arr[j] + arr[k] = L) and (L % arr[i] = L % arr[j] = L % arr[k] = 0.
Examples:
Input: arr[] = {2, 4, 5, 6, 7}
Output: 1
Only possible triplet is {2, 4, 6}
Input: arr[] = {4, 4, 4, 4, 4}
Output: 10
Approach:
- Consider the equations below:
L = a * arr[i], L = b * arr[j] and L = c * arr[k].
Thus, arr[i] = L / a, arr[j] = L / b and arr[k] = L / c.
So, using this in arr[i] + arr[j] + arr[k] = L gives L / a + L / b + L / c = L
or 1 / a + 1 / b + 1 / c = 1.
Now, there can only be 10 possible solutions of the above equation, which are
{2, 3, 6}
{2, 4, 4}
{2, 6, 3}
{3, 2, 6}
{3, 3, 3}
{3, 6, 2}
{4, 2, 4}
{4, 4, 2}
{6, 2, 3}
{6, 3, 2}All possible triplets (arr[i], arr[j], arr[k]) will satisfy these solutions. So, all these solutions can be stored in a 2D array say test[][3]. So, that all the triplets which satisfy these solutions can be found.
- For all i from 1 to N. Consider arr[i] as the middle element of the triplet. And find corresponding first and third elements of the triplet for all possible solutions of the equation 1 / a + 1 / b + 1 / c = 1. Find the answer for all the cases and add them to the final answer.
- Maintain the indices where arr[i] occurs in the array. For a given possible solution of equation X and for every number arr[i] keep the number as middle element of triplet and find the first and the third element. Apply binary search on the available set of indices for the first and the third element to find the number of occurrence of the first element from 1 to i – 1 and the number of occurrences of the third element from i + 1 to N. Multiply both the values and add it to the final answer.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define ll long long int #define MAX 100001 #define ROW 10 #define COl 3 vector< int > indices[MAX]; // All possible solutions of the // equation 1/a + 1/b + 1/c = 1 int test[ROW][COl] = { { 2, 3, 6 }, { 2, 4, 4 }, { 2, 6, 3 }, { 3, 2, 6 }, { 3, 3, 3 }, { 3, 6, 2 }, { 4, 2, 4 }, { 4, 4, 2 }, { 6, 2, 3 }, { 6, 3, 2 } }; // Function to find the triplets int find_triplet( int array[], int n) { int answer = 0; // Storing indices of the elements for ( int i = 0; i < n; i++) { indices[array[i]].push_back(i); } for ( int i = 0; i < n; i++) { int y = array[i]; for ( int j = 0; j < ROW; j++) { int s = test[j][1] * y; // Check if y can act as the middle // element of triplet with the given // solution of 1/a + 1/b + 1/c = 1 if (s % test[j][0] != 0) continue ; if (s % test[j][2] != 0) continue ; int x = s / test[j][0]; ll z = s / test[j][2]; if (x > MAX || z > MAX) continue ; int l = 0; int r = indices[x].size() - 1; int first = -1; // Binary search to find the number of // possible values of the first element while (l <= r) { int m = (l + r) / 2; if (indices[x][m] < i) { first = m; l = m + 1; } else { r = m - 1; } } l = 0; r = indices[z].size() - 1; int third = -1; // Binary search to find the number of // possible values of the third element while (l <= r) { int m = (l + r) / 2; if (indices[z][m] > i) { third = m; r = m - 1; } else { l = m + 1; } } if (first != -1 && third != -1) { // Contribution to the answer would // be the multiplication of the possible // values for the first and the third element answer += (first + 1) * (indices[z].size() - third); } } } return answer; } // Driver code int main() { int array[] = { 2, 4, 5, 6, 7 }; int n = sizeof (array) / sizeof (array[0]); cout << find_triplet(array, n); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { static int MAX = 100001 ; static int ROW = 10 ; static int COl = 3 ; static Vector<Integer> []indices = new Vector[MAX]; // All possible solutions of the // equation 1/a + 1/b + 1/c = 1 static int test[][] = { { 2 , 3 , 6 }, { 2 , 4 , 4 }, { 2 , 6 , 3 }, { 3 , 2 , 6 }, { 3 , 3 , 3 }, { 3 , 6 , 2 }, { 4 , 2 , 4 }, { 4 , 4 , 2 }, { 6 , 2 , 3 }, { 6 , 3 , 2 } }; // Function to find the triplets static int find_triplet( int array[], int n) { int answer = 0 ; for ( int i = 0 ; i < MAX; i++) { indices[i] = new Vector<>(); } // Storing indices of the elements for ( int i = 0 ; i < n; i++) { indices[array[i]].add(i); } for ( int i = 0 ; i < n; i++) { int y = array[i]; for ( int j = 0 ; j < ROW; j++) { int s = test[j][ 1 ] * y; // Check if y can act as the middle // element of triplet with the given // solution of 1/a + 1/b + 1/c = 1 if (s % test[j][ 0 ] != 0 ) continue ; if (s % test[j][ 2 ] != 0 ) continue ; int x = s / test[j][ 0 ]; int z = s / test[j][ 2 ]; if (x > MAX || z > MAX) continue ; int l = 0 ; int r = indices[x].size() - 1 ; int first = - 1 ; // Binary search to find the number of // possible values of the first element while (l <= r) { int m = (l + r) / 2 ; if (indices[x].get(m) < i) { first = m; l = m + 1 ; } else { r = m - 1 ; } } l = 0 ; r = indices[z].size() - 1 ; int third = - 1 ; // Binary search to find the number of // possible values of the third element while (l <= r) { int m = (l + r) / 2 ; if (indices[z].get(m) > i) { third = m; r = m - 1 ; } else { l = m + 1 ; } } if (first != - 1 && third != - 1 ) { // Contribution to the answer would // be the multiplication of the possible // values for the first and the third element answer += (first + 1 ) * (indices[z].size() - third); } } } return answer; } // Driver code public static void main(String []args) { int array[] = { 2 , 4 , 5 , 6 , 7 }; int n = array.length; System.out.println(find_triplet(array, n)); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of the approach MAX = 100001 ROW = 10 COL = 3 indices = [ 0 ] * MAX # All possible solutions of the # equation 1/a + 1/b + 1/c = 1 test = [[ 2 , 3 , 6 ], [ 2 , 4 , 4 ], [ 2 , 6 , 3 ], [ 3 , 2 , 6 ], [ 3 , 3 , 3 ], [ 3 , 6 , 2 ], [ 4 , 2 , 4 ], [ 4 , 4 , 2 ], [ 6 , 2 , 3 ], [ 6 , 3 , 2 ]] # Function to find the triplets def find_triplet(array, n): answer = 0 for i in range ( MAX ): indices[i] = [] # Storing indices of the elements for i in range (n): indices[array[i]].append(i) for i in range (n): y = array[i] for j in range (ROW): s = test[j][ 1 ] * y # Check if y can act as the middle # element of triplet with the given # solution of 1/a + 1/b + 1/c = 1 if s % test[j][ 0 ] ! = 0 : continue if s % test[j][ 2 ] ! = 0 : continue x = s / / test[j][ 0 ] z = s / / test[j][ 2 ] if x > MAX or z > MAX : continue l = 0 r = len (indices[x]) - 1 first = - 1 # Binary search to find the number of # possible values of the first element while l < = r: m = (l + r) / / 2 if indices[x][m] < i: first = m l = m + 1 else : r = m - 1 l = 0 r = len (indices[z]) - 1 third = - 1 # Binary search to find the number of # possible values of the third element while l < = r: m = (l + r) / / 2 if indices[z][m] > i: third = m r = m - 1 else : l = m + 1 if first ! = - 1 and third ! = - 1 : # Contribution to the answer would # be the multiplication of the possible # values for the first and the third element answer + = (first + 1 ) * ( len (indices[z]) - third) return answer # Driver Code if __name__ = = "__main__" : array = [ 2 , 4 , 5 , 6 , 7 ] n = len (array) print (find_triplet(array, n)) # This code is contributed by # sanjeev2552 |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { static int MAX = 100001; static int ROW = 10; static int COl = 3; static List< int > []indices = new List< int >[MAX]; // All possible solutions of the // equation 1/a + 1/b + 1/c = 1 static int [,]test = { { 2, 3, 6 }, { 2, 4, 4 }, { 2, 6, 3 }, { 3, 2, 6 }, { 3, 3, 3 }, { 3, 6, 2 }, { 4, 2, 4 }, { 4, 4, 2 }, { 6, 2, 3 }, { 6, 3, 2 } }; // Function to find the triplets static int find_triplet( int []array, int n) { int answer = 0; for ( int i = 0; i < MAX; i++) { indices[i] = new List< int >(); } // Storing indices of the elements for ( int i = 0; i < n; i++) { indices[array[i]].Add(i); } for ( int i = 0; i < n; i++) { int y = array[i]; for ( int j = 0; j < ROW; j++) { int s = test[j, 1] * y; // Check if y can act as the middle // element of triplet with the given // solution of 1/a + 1/b + 1/c = 1 if (s % test[j, 0] != 0) continue ; if (s % test[j, 2] != 0) continue ; int x = s / test[j, 0]; int z = s / test[j, 2]; if (x > MAX || z > MAX) continue ; int l = 0; int r = indices[x].Count - 1; int first = -1; // Binary search to find the number of // possible values of the first element while (l <= r) { int m = (l + r) / 2; if (indices[x][m] < i) { first = m; l = m + 1; } else { r = m - 1; } } l = 0; r = indices[z].Count - 1; int third = -1; // Binary search to find the number of // possible values of the third element while (l <= r) { int m = (l + r) / 2; if (indices[z][m] > i) { third = m; r = m - 1; } else { l = m + 1; } } if (first != -1 && third != -1) { // Contribution to the answer would // be the multiplication of the possible // values for the first and the third element answer += (first + 1) * (indices[z].Count - third); } } } return answer; } // Driver code public static void Main(String []args) { int []array = { 2, 4, 5, 6, 7 }; int n = array.Length; Console.WriteLine(find_triplet(array, n)); } } // This code is contributed by Rajput-Ji |
1
Recommended Posts:
- Count pairs of strings that satisfy the given conditions
- Count of triplets that satisfy the given equation
- Count of indices in an array that satisfy the given condition
- Count valid pairs in the array satisfying given conditions
- Count of operations required to update the array such that it satisfies the given conditions
- Count sub-sets that satisfy the given condition
- Count index pairs which satisfy the given condition
- Count the triplets such that A[i] < B[j] < C[k]
- Count triplets with sum smaller than a given value
- Count Triplets such that one of the numbers can be written as sum of the other two
- Count ways to form minimum product triplets
- Generate an array B[] from the given array A[] which satisfies the given conditions
- Pairs from an array that satisfy the given condition
- Find all pairs (a,b) and (c,d) in array which satisfy ab = cd
- Generate elements of the array following given conditions
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.