Skip to content
Related Articles

Related Articles

Improve Article

Count of all N digit numbers such that num + Rev(num) = 10^N – 1

  • Last Updated : 22 Mar, 2021

Given an integer N, the task is to find the count of all N digit numbers such that num + Rev(num) = 10N – 1
Examples: 
 

Input: N = 2 
Output:
All possible numbers are 
18 + 81 = 99 
27 + 72 = 99 
36 + 45 = 99 
45 + 54 = 99 
54 + 45 = 99 
63 + 54 = 99 
72 + 27 = 99 
81 + 18 = 99 
90 + 09 = 99
Input: N = 4 
Output: 90 
 

 

Approach There are 2 cases: 
If n is odd then answer will be 0. 
 

Let n = 3 then num = d1d2d3 and rev(num) = d3d2d1 
num + rev(num) should be 999 since n = 3. 
So the below equations must be satisfied 
d1 + d3 = 9 … (1) 
d2 + d2 = 9 … (2) 
d3 + d1 = 9 … (3) 
Considering equation 2: 
d2 + d2 = 9 
2 * d2 = 9 
d2 = 4.5 which is not possible because the digit of a number should always be a whole number. 
Therefore If n is odd then answer will be 0. 
 



If n is even then answer will be 9 * 10(N / 2 – 1)
 

Let n = 4 then num = d1d2d3d4 and rev(num) = d4d3d2d1 
So the below equations should be satisfied 
d1 + d4 = 9 … (1) 
d2 + d3 = 9 … (2) 
d3 + d2 = 9 … (3) 
d4 + d1 = 9 … (4)
Considering equation 1: d1 + d4 = 9. It can be true in 9 ways: 
(1 + 8), (2 + 7), (3 + 6), (4 + 5), (5 + 4), (6 + 3), (7 + 2), (8 + 1) and (9 + 0) 
Similarly other equations will also have 9 solutions + 1 more solution since the remaining digits are not the first and last digit of the number and we can take sum of the form (0 + 9)
And since half of the equations are same 
Therefore, if n is even then answer will be 9 * 10(N / 2 – 1)
 

Below is the implementation of the above approach
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// count of such numbers
int countNumbers(int n)
{
 
    // If n is odd
    if (n % 2 == 1)
        return 0;
 
    return (9 * pow(10, n / 2 - 1));
}
 
// Driver code
int main()
{
    int n = 2;
    cout << countNumbers(n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG {
 
    // Function to return the
    // count of such numbers
    static int countNumbers(int n)
    {
 
        // If n is odd
        if (n % 2 == 1)
            return 0;
 
        return (9 * (int)Math.pow(10, n / 2 - 1));
    }
 
    // Driver code
    public static void main(String args[])
    {
        int n = 2;
        System.out.print(countNumbers(n));
    }
}

Python3




# Python3 implementation of the approach
 
# Function to return the
# count of such numbers
def countNumbers(n):
 
    # If n is odd
    if n % 2 == 1:
        return 0
 
    return (9 * pow(10, n // 2 - 1))
 
# Driver code
if __name__ == "__main__":
 
    n = 2
    print(countNumbers(n))
 
# This code is contributed
# by Rituraj Jain

C#




// C# implementation of the approach
using System;
class GFG {
 
    // Function to return the
    // count of such numbers
    static int countNumbers(int n)
    {
 
        // If n is odd
        if (n % 2 == 1)
            return 0;
 
        return (9 * (int)Math.Pow(10, n / 2 - 1));
    }
 
    // Driver code
    public static void Main()
    {
        int n = 2;
        Console.WriteLine(countNumbers(n));
    }
}

PHP




<?php
// PHP implementation of the approach
 
// Function to return the
// count of such numbers
function countNumbers($n)
{
 
    // If n is odd
    if ($n % 2 == 1)
        return 0;
 
    return (9 * (int)pow(10, $n / 2 - 1));
}
 
// Driver code
$n = 2;
echo(countNumbers($n));
 
// This code is contributed by Code_Mech

Javascript




<script>
 
 
// Javascript implementation of the approach
 
// Function to return the
// count of such numbers
function countNumbers(n)
{
 
    // If n is odd
    if (n % 2 == 1)
        return 0;
 
    return (9 * Math.pow(10, parseInt(n / 2) - 1));
}
 
// Driver code
var n = 2;
document.write(countNumbers(n));
 
 
</script>
Output: 
9

 

Time Complexity: O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :