Skip to content
Related Articles

Related Articles

Improve Article

Count all the numbers less than 10^6 whose minimum prime factor is N

  • Difficulty Level : Expert
  • Last Updated : 05 May, 2021

Given a number N which is prime. The task is to find all the numbers less than or equal to 10^6 whose minimum prime factor is N.
Examples: 
 

Input: N = 2
Output: 500000

Input: N = 3
Output: 166667

 

Approach: Use sieve of Eratosthenes to find the solution to the problem. Store all the prime numbers less than 10^6 . Form another sieve that will store the count of all the numbers whose minimum prime factor is the index of the sieve. Then display the count of the prime number N (i.e. sieve_count[n]+1), where n is the prime number.
Below is the implementation of above approach: 
 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
#define MAX 1000000
 
// the sieve of prime number and
// count of minimum prime factor
int sieve_Prime[MAX + 4] = { 0 },
                      sieve_count[MAX + 4] = { 0 };
 
// form the prime sieve
void form_sieve()
{
    // 1 is not a prime number
    sieve_Prime[1] = 1;
 
    // form the sieve
    for (int i = 2; i <= MAX; i++) {
 
        // if i is prime
        if (sieve_Prime[i] == 0) {
            for (int j = i * 2; j <= MAX; j += i) {
 
                // if i is the least prime factor
                if (sieve_Prime[j] == 0) {
 
                    // mark the number j as non prime
                    sieve_Prime[j] = 1;
 
                    // count the numbers whose least prime factor is i
                    sieve_count[i]++;
                }
            }
        }
    }
}
 
// Driver code
int main()
{
    // form the sieve
    form_sieve();
 
    int n = 2;
 
    // display
    cout << "Count = " << (sieve_count[n] + 1) << endl;
 
    n = 3;
 
    // display
    cout << "Count = " << (sieve_count[n] + 1) << endl;
 
    return 0;
}

Java




// Java implementation of above approach
import java.io.*;
 
class GFG {
     
static int MAX = 1000000;
 
// the sieve of prime number and
// count of minimum prime factor
static int sieve_Prime[] = new int[MAX + 4];
static int sieve_count[] =  new int[MAX + 4];
 
// form the prime sieve
static void form_sieve()
{
    // 1 is not a prime number
    sieve_Prime[1] = 1;
 
    // form the sieve
    for (int i = 2; i <= MAX; i++) {
 
        // if i is prime
        if (sieve_Prime[i] == 0) {
            for (int j = i * 2; j <= MAX; j += i) {
 
                // if i is the least prime factor
                if (sieve_Prime[j] == 0) {
 
                    // mark the number j as non prime
                    sieve_Prime[j] = 1;
 
                    // count the numbers whose least prime factor is i
                    sieve_count[i]++;
                }
            }
        }
    }
}
 
// Driver code
 
    public static void main (String[] args) {
        // form the sieve
    form_sieve();
 
    int n = 2;
 
    // display
    System.out.println( "Count = " + (sieve_count[n] + 1));
 
    n = 3;
 
    // display
    System.out.println ("Count = "  +(sieve_count[n] + 1));
    }
}
// This code was contributed
// by inder_mca

Python3




# Python3 implementation of
# above approach
 
MAX = 1000000
 
# the sieve of prime number and
# count of minimum prime factor
sieve_Prime = [0 for i in range(MAX + 4)]
sieve_count = [0 for i in range(MAX + 4)]
 
# form the prime sieve
def form_sieve():
     
    # 1 is not a prime number
    sieve_Prime[1] = 1
 
    # form the sieve
    for i in range(2, MAX + 1):
 
        # if i is prime
        if sieve_Prime[i] == 0:
            for j in range(i * 2, MAX + 1, i):
 
                # if i is the least prime factor
                if sieve_Prime[j] == 0:
 
                    # mark the number j
                    # as non prime
                    sieve_Prime[j] = 1
 
                    # count the numbers whose
                    # least prime factor is i
                    sieve_count[i] += 1
 
# Driver code
 
# form the sieve
form_sieve()
 
n = 2
 
# display
print("Count =", sieve_count[n] + 1)
 
n = 3
 
# display
print("Count =", sieve_count[n] + 1)
 
# This code was contributed
# by VishalBachchas

C#




// C# implementation of above approach
using System;
 
class GFG {
     
static int MAX = 1000000;
 
// the sieve of prime number and
// count of minimum prime factor
static int []sieve_Prime = new int[MAX + 4];
static int []sieve_count = new int[MAX + 4];
 
// form the prime sieve
static void form_sieve()
{
    // 1 is not a prime number
    sieve_Prime[1] = 1;
 
    // form the sieve
    for (int i = 2; i <= MAX; i++) {
 
        // if i is prime
        if (sieve_Prime[i] == 0) {
            for (int j = i * 2; j <= MAX; j += i) {
 
                // if i is the least prime factor
                if (sieve_Prime[j] == 0) {
 
                    // mark the number j as non prime
                    sieve_Prime[j] = 1;
 
                    // count the numbers whose least prime factor is i
                    sieve_count[i]++;
                }
            }
        }
    }
}
 
// Driver code
 
    public static void Main () {
        // form the sieve
    form_sieve();
 
    int n = 2;
 
    // display
    Console.WriteLine( "Count = " + (sieve_count[n] + 1));
 
    n = 3;
 
    // display
    Console.WriteLine ("Count = " +(sieve_count[n] + 1));
    }
}
// This code was contributed
// by shs

PHP




<?php
// PHP implementation of above approach
$MAX = 1000000;
 
// the sieve of prime number and
// count of minimum prime factor
$sieve_Prime = array_fill(0, $MAX + 4, NULL);
$sieve_count = array_fill(0, $MAX + 4, NULL);
 
// form the prime sieve
function form_sieve()
{
    global $sieve_Prime, $sieve_count, $MAX;
     
    // 1 is not a prime number
    $sieve_Prime[1] = 1;
 
    // form the sieve
    for ($i = 2; $i <= $MAX; $i++)
    {
 
        // if i is prime
        if ($sieve_Prime[$i] == 0)
        {
            for ($j = $i * 2; $j <= $MAX; $j += $i)
            {
 
                // if i is the least prime factor
                if ($sieve_Prime[$j] == 0)
                {
 
                    // mark the number j as non prime
                    $sieve_Prime[$j] = 1;
 
                    // count the numbers whose least
                    // prime factor is i
                    $sieve_count[$i]++;
                }
            }
        }
    }
}
 
// Driver code
 
// form the sieve
form_sieve();
 
$n = 2;
 
// display
echo "Count = " . ($sieve_count[$n] + 1) . "\n";
 
$n = 3;
 
// display
echo "Count = " . ($sieve_count[$n] + 1) . "\n";
 
// This code is contributed by ita_c
?>

Javascript




<script>
 
// Javascript implementation of above approach
    
var MAX = 1000000;
 
// the sieve of prime number and
// count of minimum prime factor
var sieve_Prime = Array.from({length: MAX + 4},
(_, i) => 0);
var sieve_count =  Array.from({length: MAX + 4},
(_, i) => 0);
 
// form the prime sieve
function form_sieve()
{
    // 1 is not a prime number
    sieve_Prime[1] = 1;
 
    // form the sieve
    for (i = 2; i <= MAX; i++) {
 
        // if i is prime
        if (sieve_Prime[i] == 0) {
            for (j = i * 2; j <= MAX; j += i) {
 
                // if i is the least prime factor
                if (sieve_Prime[j] == 0) {
 
                    // mark the number j as non prime
                    sieve_Prime[j] = 1;
 
                    // count the numbers whose least
                    // prime factor is i
                    sieve_count[i]++;
                }
            }
        }
    }
}
 
// Driver code
 
// form the sieve
form_sieve();
 
var n = 2;
 
// display
document.write( "Count = " + (sieve_count[n] + 1));
 
n = 3;
 
// display
document.write("<br>Count = "  +(sieve_count[n] + 1));
    
 
 
// This code contributed by shikhasingrajput
 
</script>
Output: 
Count = 500000
Count = 166667

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :