Related Articles

# Count all the numbers less than 10^6 whose minimum prime factor is N

• Difficulty Level : Expert
• Last Updated : 05 May, 2021

Given a number N which is prime. The task is to find all the numbers less than or equal to 10^6 whose minimum prime factor is N.
Examples:

```Input: N = 2
Output: 500000

Input: N = 3
Output: 166667```

Approach: Use sieve of Eratosthenes to find the solution to the problem. Store all the prime numbers less than 10^6 . Form another sieve that will store the count of all the numbers whose minimum prime factor is the index of the sieve. Then display the count of the prime number N (i.e. sieve_count[n]+1), where n is the prime number.
Below is the implementation of above approach:

## C++

 `// C++ implementation of above approach``#include ``using` `namespace` `std;``#define MAX 1000000` `// the sieve of prime number and``// count of minimum prime factor``int` `sieve_Prime[MAX + 4] = { 0 },``                      ``sieve_count[MAX + 4] = { 0 };` `// form the prime sieve``void` `form_sieve()``{``    ``// 1 is not a prime number``    ``sieve_Prime = 1;` `    ``// form the sieve``    ``for` `(``int` `i = 2; i <= MAX; i++) {` `        ``// if i is prime``        ``if` `(sieve_Prime[i] == 0) {``            ``for` `(``int` `j = i * 2; j <= MAX; j += i) {` `                ``// if i is the least prime factor``                ``if` `(sieve_Prime[j] == 0) {` `                    ``// mark the number j as non prime``                    ``sieve_Prime[j] = 1;` `                    ``// count the numbers whose least prime factor is i``                    ``sieve_count[i]++;``                ``}``            ``}``        ``}``    ``}``}` `// Driver code``int` `main()``{``    ``// form the sieve``    ``form_sieve();` `    ``int` `n = 2;` `    ``// display``    ``cout << ``"Count = "` `<< (sieve_count[n] + 1) << endl;` `    ``n = 3;` `    ``// display``    ``cout << ``"Count = "` `<< (sieve_count[n] + 1) << endl;` `    ``return` `0;``}`

## Java

 `// Java implementation of above approach``import` `java.io.*;` `class` `GFG {``    ` `static` `int` `MAX = ``1000000``;` `// the sieve of prime number and``// count of minimum prime factor``static` `int` `sieve_Prime[] = ``new` `int``[MAX + ``4``];``static` `int` `sieve_count[] =  ``new` `int``[MAX + ``4``];` `// form the prime sieve``static` `void` `form_sieve()``{``    ``// 1 is not a prime number``    ``sieve_Prime[``1``] = ``1``;` `    ``// form the sieve``    ``for` `(``int` `i = ``2``; i <= MAX; i++) {` `        ``// if i is prime``        ``if` `(sieve_Prime[i] == ``0``) {``            ``for` `(``int` `j = i * ``2``; j <= MAX; j += i) {` `                ``// if i is the least prime factor``                ``if` `(sieve_Prime[j] == ``0``) {` `                    ``// mark the number j as non prime``                    ``sieve_Prime[j] = ``1``;` `                    ``// count the numbers whose least prime factor is i``                    ``sieve_count[i]++;``                ``}``            ``}``        ``}``    ``}``}` `// Driver code` `    ``public` `static` `void` `main (String[] args) {``        ``// form the sieve``    ``form_sieve();` `    ``int` `n = ``2``;` `    ``// display``    ``System.out.println( ``"Count = "` `+ (sieve_count[n] + ``1``));` `    ``n = ``3``;` `    ``// display``    ``System.out.println (``"Count = "`  `+(sieve_count[n] + ``1``));``    ``}``}``// This code was contributed``// by inder_mca`

## Python3

 `# Python3 implementation of``# above approach` `MAX` `=` `1000000` `# the sieve of prime number and``# count of minimum prime factor``sieve_Prime ``=` `[``0` `for` `i ``in` `range``(``MAX` `+` `4``)]``sieve_count ``=` `[``0` `for` `i ``in` `range``(``MAX` `+` `4``)]` `# form the prime sieve``def` `form_sieve():``    ` `    ``# 1 is not a prime number``    ``sieve_Prime[``1``] ``=` `1` `    ``# form the sieve``    ``for` `i ``in` `range``(``2``, ``MAX` `+` `1``):` `        ``# if i is prime``        ``if` `sieve_Prime[i] ``=``=` `0``:``            ``for` `j ``in` `range``(i ``*` `2``, ``MAX` `+` `1``, i):` `                ``# if i is the least prime factor``                ``if` `sieve_Prime[j] ``=``=` `0``:` `                    ``# mark the number j``                    ``# as non prime``                    ``sieve_Prime[j] ``=` `1` `                    ``# count the numbers whose``                    ``# least prime factor is i``                    ``sieve_count[i] ``+``=` `1` `# Driver code` `# form the sieve``form_sieve()` `n ``=` `2` `# display``print``(``"Count ="``, sieve_count[n] ``+` `1``)` `n ``=` `3` `# display``print``(``"Count ="``, sieve_count[n] ``+` `1``)` `# This code was contributed``# by VishalBachchas`

## C#

 `// C# implementation of above approach``using` `System;` `class` `GFG {``    ` `static` `int` `MAX = 1000000;` `// the sieve of prime number and``// count of minimum prime factor``static` `int` `[]sieve_Prime = ``new` `int``[MAX + 4];``static` `int` `[]sieve_count = ``new` `int``[MAX + 4];` `// form the prime sieve``static` `void` `form_sieve()``{``    ``// 1 is not a prime number``    ``sieve_Prime = 1;` `    ``// form the sieve``    ``for` `(``int` `i = 2; i <= MAX; i++) {` `        ``// if i is prime``        ``if` `(sieve_Prime[i] == 0) {``            ``for` `(``int` `j = i * 2; j <= MAX; j += i) {` `                ``// if i is the least prime factor``                ``if` `(sieve_Prime[j] == 0) {` `                    ``// mark the number j as non prime``                    ``sieve_Prime[j] = 1;` `                    ``// count the numbers whose least prime factor is i``                    ``sieve_count[i]++;``                ``}``            ``}``        ``}``    ``}``}` `// Driver code` `    ``public` `static` `void` `Main () {``        ``// form the sieve``    ``form_sieve();` `    ``int` `n = 2;` `    ``// display``    ``Console.WriteLine( ``"Count = "` `+ (sieve_count[n] + 1));` `    ``n = 3;` `    ``// display``    ``Console.WriteLine (``"Count = "` `+(sieve_count[n] + 1));``    ``}``}``// This code was contributed``// by shs`

## PHP

 ``

## Javascript

 ``
Output:
```Count = 500000
Count = 166667```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up