Open In App
Related Articles

Construct an array from GCDs of consecutive elements in given array

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given an array a[] of n elements. The task is to find the array (say b[]) of n + 1 such that Greatest Common Divisor of b[i] and b[i + 1] is equals to a[i]. If multiple solutions exist, print the one whose array sum is minimum.

Examples: 

Input : a[] = { 1, 2, 3 }
Output : 1 2 6 3
GCD(1, 2) = 1
GCD(2, 6) = 2
GCD(6, 3) = 3
Also, 1 + 2 + 6 + 3 = 12 which is smallest among all
possible value of array that can be constructed.

Input : a[] = { 5, 10, 5 }
Output : 5 10 10 5

Suppose there is only one number in the given array a[]. Let it be K, and then both numbers in the constructed array (say b[]) will be K and K.
So, the value of the b[0] will be a[0] only. Now consider that, we are done up to index i i.e we have already processed upto index i and calculated b[i + 1].
Now the gcd(b[i + 1], b[i + 2]) = a[i + 1] and gcd(b[i + 2], b[i + 3]) = a[i + 2]. So, b[i + 2] >= lcm(a[i + 1], a[i + 2]). Or, b[i + 2] will be multiple of lcm(a[i + 1], a[i + 2]). As we want the minimum sum, so we want the minimum value of b[i + 2]. So, b[i + 2] = lcm(a[i + 2], a[i + 3]).

Below is the implementation of this approach: 

C++

// CPP Program to construct an array whose GCD of
// every consecutive element is the given array
#include <bits/stdc++.h>
using namespace std;
 
// Return the LCM of two numbers.
int lcm(int a, int b)
{
    return (a * b) / __gcd(a, b);
}
 
// Print the required constructed array
void printArray(int a[], int n)
{
    // printing the first element.
    cout << a[0] << " ";
 
    // finding and printing the LCM of consecutive
    // element of given array.
    for (int i = 0; i < n - 1; i++)
        cout << lcm(a[i], a[i + 1]) << " ";
 
    // printing the last element of the given array.
    cout << a[n - 1] << endl;
}
 
// Driven Program
int main()
{
    int a[] = { 1, 2, 3 };
    int n = sizeof(a) / sizeof(a[0]);
    printArray(a, n);
    return 0;
}

                    

Java

// Java Program to construct an array whose
// GCD of every consecutive element is the
// given array
 
import java.io.*;
 
class GFG {
     
    // Recursive function to return gcd of
    // a and b
    static int __gcd(int a, int b)
    {
         
        // Everything divides 0
        if (a == 0 || b == 0)
        return 0;
     
        // base case
        if (a == b)
            return a;
     
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
             
        return __gcd(a, b - a);
    }
 
    // Return the LCM of two numbers.
    static int lcm(int a, int b)
    {
        return (a * b) / __gcd(a, b);
    }
     
    // Print the required constructed array
    static void printArray(int a[], int n)
    {
         
        // printing the first element.
        System.out.print( a[0] + " ");
     
        // finding and printing the LCM of
        // consecutive element of given array.
        for (int i = 0; i < n - 1; i++)
            System.out.print(lcm(a[i],
                            a[i + 1]) + " ");
     
        // printing the last element of the
        // given array.
        System.out.print(a[n - 1]);
    }
     
    // Driven Program
    public static void main (String[] args)
    {
        int a[] = { 1, 2, 3 };
        int n = a.length;
        printArray(a, n);
    }
}
 
// This code is contributed by anuj_67.

                    

Python3

# Python Program to construct an array whose
# GCD of every consecutive element is the
# given array
 
# Recursive function to return gcd of
# a and b
def __gcd( a, b):
         
    # Everything divides 0
    if (a == 0 or b == 0):
        return 0
         
    # base case
    if (a == b):
        return a
         
    # a is greater
    if (a > b):
        return __gcd(a - b, b)        
    return __gcd(a, b - a)
     
# Return the LCM of two numbers.
def lcm(a, b):
    return (a * b) / __gcd(a, b)
 
# Print the required constructed array
def printArray(a, n):
         
    # printing the first element.
    print ( str(a[0]) + " ")
         
    # finding and printing the LCM of
    # consecutive element of given array.
    for i in range(0,n-1):
        print (str(lcm(a[i],a[i + 1])) + " ")
         
    # printing the last element of the
    # given array.
    print (a[n - 1])
 
# Driver code
a = [1, 2, 3 ]
n = len(a)
printArray(a, n)
 
# This code is contributed by Prateek Bajaj

                    

C#

// C# Program to construct an array whose
// GCD of every consecutive element is the
// given array
using System;
class GFG {
     
    // Recursive function to return
    // gcd of a and b
    static int __gcd(int a, int b)
    {
        // Everything divides 0
        if (a == 0 || b == 0)
        return 0;
     
        // base case
        if (a == b)
            return a;
     
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
             
        return __gcd(a, b - a);
    }
 
    // Return the LCM of two numbers.
    static int lcm(int a, int b)
    {
        return (a * b) / __gcd(a, b);
    }
     
    // Print the required constructed array
    static void printArray(int []a, int n)
    {
         
        // printing the first element.
        Console.Write( a[0] + " ");
     
        // finding and printing the LCM of
        // consecutive element of given array.
        for (int i = 0; i < n - 1; i++)
            Console.Write(lcm(a[i],
                  a[i + 1]) + " ");
     
        // printing the last element
        // of the given array.
        Console.Write(a[n - 1]);
    }
     
    // Driver Code
    public static void Main ()
    {
        int []a = {1, 2, 3};
        int n = a.Length;
        printArray(a, n);
    }
}
 
// This code is contributed by anuj_67.

                    

PHP

<?php
// PHP Program to construct
// an array whose GCD of
// every consecutive element
// is the given array
 
// Recursive function to
// return gcd of a and b
function __gcd($a, $b)
{
     
    // Everything divides 0
    if($a == 0 or $b == 0)
        return 0 ;
 
    // base case
    if($a == $b)
        return $a ;
     
    // a is greater
    if($a > $b)
        return __gcd( $a - $b , $b ) ;
 
    return __gcd( $a , $b - $a ) ;
}
 
// Return the LCM of two numbers.
function lcm($a, $b)
{
    return ($a * $b) / __gcd($a, $b);
}
 
// Print the required constructed array
function printArray( $a, $n)
{
     
    // printing the first element.
    echo $a[0] , " ";
 
    // finding and printing
    // the LCM of consecutive
    // element of given array.
    for ( $i = 0; $i < $n - 1; $i++)
        echo lcm($a[$i], $a[$i + 1]) , " ";
 
    // printing the last element
    // of the given array.
    echo $a[$n - 1] ,"\n";
}
 
    // Driver Code
    $a = array(1, 2, 3);
    $n = count($a);
    printArray($a, $n);
 
// This code is contributed by anuj_67.
?>

                    

Javascript

<script>
 
// Javascript Program to construct an array whose GCD of
// every consecutive element is the given array
 
function __gcd(a, b)
    {
        // Everything divides 0
        if (a == 0 || b == 0)
        return 0;
     
        // base case
        if (a == b)
            return a;
     
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
             
        return __gcd(a, b - a);
    }
 
// Return the LCM of two numbers.
function lcm(a, b)
{
    return (a * b) / __gcd(a, b);
}
 
// Print the required constructed array
function printArray(a, n)
{
 
    // printing the first element.
    document.write( a[0] + " ");
 
    // finding and printing the LCM of consecutive
    // element of given array.
    for (var i = 0; i < n - 1; i++)
        document.write( lcm(a[i], a[i + 1]) + " ");
 
    // printing the last element of the given array.
    document.write( a[n - 1] + "<br>");
}
 
// Driven Program
var a = [ 1, 2, 3 ];
var n = a.length;
printArray(a, n);
 
// This code is contributed by rrrtnx.
</script>

                    

Output
1 2 6 3

Complexity Analysis:

  • Time complexity: O(n * log(max(a, b)), where n represents the size of the given array.
  • Auxiliary Space: O(1)


Last Updated : 18 Aug, 2022
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads