# Sum of GCDs of each row of the given matrix

Given a matrix **mat[][]** of size **N * N**, the task is to find the sum of GCDs of all the rows of the given matrix.

**Examples:**

Input:arr[][] = {

{2, 4, 6, 8},

{3, 6, 9, 12},

{4, 8, 12, 16},

{5, 10, 15, 20}};

Output:14

gcd(2, 4, 6, 8) = 2

gcd(3, 6, 9, 12) = 3

gcd(4, 8, 12, 16) = 4

gcd(5, 10, 15, 20) = 5

2 + 3 + 4 + 5 = 14

Input:arr[][] = {

{1, 1, 1, 1},

{2, 2, 2, 2},

{3, 3, 3, 3},

{4, 4, 4, 4}};

Output:10

**Approach:** Find the GCD of each row of the matrix and add it to the total sum. The total sum will be the sum of GCD of all the rows.

Below is the implementation of the above approach:

## CPP

`// C++ implementation of the approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to return gcd of a and b ` `int` `gcd(` `int` `a, ` `int` `b) ` `{ ` ` ` `if` `(a == 0) ` ` ` `return` `b; ` ` ` `return` `gcd(b % a, a); ` `} ` ` ` `// Function to return the sum of gcd ` `// of each row of the given matrix ` `int` `sumGcd(` `int` `arr[][4], ` `int` `n) ` `{ ` ` ` ` ` `// To store the required sum ` ` ` `int` `sum = 0; ` ` ` ` ` `for` `(` `int` `i = 0; i < n; i++) { ` ` ` ` ` `// To store the gcd of the current row ` ` ` `int` `gcdRow = arr[i][0]; ` ` ` `for` `(` `int` `j = 1; j < n; j++) ` ` ` `gcdRow = gcd(arr[i][j], gcdRow); ` ` ` ` ` `// Add gcd of the current row to the sum ` ` ` `sum += gcdRow; ` ` ` `} ` ` ` ` ` `// Return the required sum ` ` ` `return` `sum; ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `int` `arr[][4] = { { 2, 4, 6, 8 }, ` ` ` `{ 3, 6, 9, 12 }, ` ` ` `{ 4, 8, 12, 16 }, ` ` ` `{ 5, 10, 15, 20 } }; ` ` ` `int` `size = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]); ` ` ` ` ` `cout << sumGcd(arr, size); ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Python

`# Python3 implementation of the approach ` ` ` `# Function to return gcd of a and b ` `def` `gcd(a, b): ` ` ` `if` `(a ` `=` `=` `0` `): ` ` ` `return` `b ` ` ` `return` `gcd(b ` `%` `a, a) ` ` ` ` ` `# Function to return the Sum of gcd ` `# of each row of the given matrix ` `def` `SumGcd(arr, n): ` ` ` ` ` `# To store the required Sum ` ` ` `Sum` `=` `0` ` ` ` ` `for` `i ` `in` `range` `(n): ` ` ` ` ` `# To store the gcd of the current row ` ` ` `gcdRow ` `=` `arr[i][` `0` `] ` ` ` ` ` `for` `j ` `in` `range` `(` `1` `,n): ` ` ` `gcdRow ` `=` `gcd(arr[i][j], gcdRow) ` ` ` ` ` `# Add gcd of the current row to the Sum ` ` ` `Sum` `+` `=` `gcdRow ` ` ` ` ` `# Return the required Sum ` ` ` `return` `Sum` ` ` ` ` `# Driver code ` ` ` `arr` `=` `[ [ ` `2` `, ` `4` `, ` `6` `, ` `8` `], ` ` ` `[ ` `3` `, ` `6` `, ` `9` `, ` `12` `], ` ` ` `[ ` `4` `, ` `8` `, ` `12` `, ` `16` `], ` ` ` `[ ` `5` `, ` `10` `, ` `15` `, ` `20` `] ] ` ` ` `size ` `=` `len` `(arr) ` ` ` `print` `(SumGcd(arr, size)) ` ` ` `# This code is contributed by mohit kumar 29 ` |

*chevron_right*

*filter_none*

**Output:**

14

## Recommended Posts:

- Construct an array from GCDs of consecutive elements in given array
- Check if matrix can be converted to another matrix by transposing square sub-matrices
- Program to check diagonal matrix and scalar matrix
- Circular Matrix (Construct a matrix with numbers 1 to m*n in spiral way)
- Count frequency of k in a matrix of size n where matrix(i, j) = i+j
- Maximize sum of N X N upper left sub-matrix from given 2N X 2N matrix
- Program to convert given Matrix to a Diagonal Matrix
- Program to check if a matrix is Binary matrix or not
- Check if it is possible to make the given matrix increasing matrix or not
- Maximum trace possible for any sub-matrix of the given matrix
- Find trace of matrix formed by adding Row-major and Column-major order of same matrix
- Pascal Matrix
- Queries in a Matrix
- Sum of all Submatrices of a Given Matrix
- Pair with given sum in matrix

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.