Skip to content
Related Articles

Related Articles

Improve Article

Compute the inverse of a matrix using NumPy

  • Last Updated : 26 Feb, 2021

The inverse of a matrix is just a reciprocal of the matrix as we do in normal arithmetic for a single number which is used to solve the equations to find the value of unknown variables. The inverse of a matrix is that matrix which when multiplied with the original matrix will give as an identity matrix. The inverse of a matrix exists only if the matrix is non-singular i.e., determinant should not be 0. Using determinant and adjoint, we can easily find the inverse of a square matrix using below formula,

if det(A) != 0
    A-1 = adj(A)/det(A)
else
    "Inverse doesn't exist"  

Matrix Equation

Ax = B\\ =>A^{-1}Ax = A^{-1}B\\ =>x = A^{-1}B

where,

A-1: The inverse of matrix A

x: The unknown variable column

B: The solution matrix

We can find out the inverse of any square matrix with the function numpy.linalg.inv(array). 

Syntax: numpy.linalg.inv(a)

Parameters:

a: Matrix to be inverted

Returns: Inverse of the matrix a.

Example 1:



Python3




# Importing Library
import numpy as np
  
# Finding an inverse of given array
arr = np.array([[1, 2], [5, 6]])
inverse_array = np.linalg.inv(arr)
print("Inverse array is ")
print(inverse_array)
print()
  
# inverse of 3X3 matrix
arr = np.array([[1, 2, 3], 
                [4, 9, 6], 
                [7, 8, 9]])
  
inverse_array = np.linalg.inv(arr)
print("Inverse array is ")
print(inverse_array)
print()
  
# inverse of 4X4 matrix
arr = np.array([[1, 2, 3, 4], 
                [10, 11, 14, 25],
                [20, 8, 7, 55], 
                [40, 41, 42, 43]])
  
inverse_array = np.linalg.inv(arr)
print("Inverse array is ")
print(inverse_array)
print()
  
# inverse of 1X1 matrix
arr = np.array([[1]])
inverse_array = np.linalg.inv(arr)
print("Inverse array is ")
print(inverse_array)

Output:

Inverse array is 
[[-1.5   0.5 ]
 [ 1.25 -0.25]]

Inverse array is 
[[-0.6875     -0.125       0.3125    ]
 [-0.125       0.25       -0.125     ]
 [ 0.64583333 -0.125      -0.02083333]]

Inverse array is 
[[-15.07692308   4.9         -0.8         -0.42307692]
 [ 32.48717949 -10.9          1.8          1.01282051]
 [-20.84615385   7.1         -1.2         -0.65384615]
 [  3.41025641  -1.1          0.2          0.08974359]]

Inverse array is 
[[1.]]

Example 2:

Python3




# Import required package 
import numpy as np 
    
# Inverses of several matrices can 
# be computed at once 
A = np.array([[[1., 2.], [3., 4.]], 
              [[1, 3], [3, 5]]]) 
    
# Calculating the inverse of the matrix 
print(np.linalg.inv(A))

Output:

[[[-2.    1.  ]
  [ 1.5  -0.5 ]]

 [[-1.25  0.75]
  [ 0.75 -0.25]]]

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :