Check whether a large number represented as array is divisible by Y

• Last Updated : 27 May, 2021

Given a large integer X represented as an array arr[] where each arr[i] stores a digit in X. The task is to check whether the number represented by the array is divisible by given integer Y.
Examples:

Input: arr[] = {1, 2, 1, 5, 6}, Y = 4
Output: Yes
12156 / 4 = 3039
Input: arr[] = {1, 1, 1, 1, 1, 1, 1, 1, 1}, Y = 14
Output: No

Approach: Start traversing the digits of the given number from the left and take the largest number which is smaller than or equal to Y and divide it with Y. If the remainder is something other than 0 then it will be carried to the next possible number formed from the remaining digits just like in the long division. After the complete number is processed, if the remainder is still something other than 0 then the represented number is not divisible by Y else it is.
Below is the implementation of the above approach:

C++

 // C++ implementation of the approach#include using namespace std; // Function that returns true if the number represented// by the given array is divisible by ybool isDivisible(int* arr, int n, int y){    int d = 0, i = 0;     // While there are digits left    while (i < n) {         // Select the next part of the number        // i.e. the maximum number which is <= y        while (d < y && i < n)            d = d * 10 + arr[i++];         // Get the current remainder        d = d % y;    }     // If the final remainder is 0    if (d == 0)        return true;    return false;} // Driver codeint main(){    int arr[] = { 1, 2, 1, 5, 6 };    int x = sizeof(arr) / sizeof(int);    int y = 4;     cout << (isDivisible(arr, x, y) ? "Yes" : "No");     return 0;}

Java

 // Java implementation of the approachclass GFG{         // Function that returns true if the number represented    // by the given array is divisible by y    static boolean isDivisible(int [] arr, int n, int y)    {        int d = 0, i = 0;             // While there are digits left        while (i < n)        {                 // Select the next part of the number            // i.e. the maximum number which is <= y            while (d < y && i < n)                d = d * 10 + arr[i++];                 // Get the current remainder            d = d % y;        }             // If the final remainder is 0        if (d == 0)            return true;        return false;    }         // Driver code    public static void main (String[] args)    {                 int [] arr = { 1, 2, 1, 5, 6 };        int x = arr.length;        int y = 4;             System.out.println(isDivisible(arr, x, y) ? "Yes" : "No");    }} // This code is contributed by ihritik

Python3

 # Python3 implementation of the approach # Function that returns true if the number represented# by the given array is divisible by ydef isDivisible(arr, n, y):    d, i = 0, 0         # While there are digits left    while i < n:                 # Select the next part of the number        # i.e. the maximum number which is <= y        while d < y and i < n:            d = d * 10 + arr[i]            i += 1                 # Get the current remainder        d = d % y             # If the final remainder is 0    if d == 0:        return True    return False # Driver codeif __name__ == "__main__":    arr = [ 1, 2, 1, 5, 6 ]    x = len(arr)    y = 4    if (isDivisible(arr, x, y)):        print("Yes")    else:        print("No")     # This code is contributed by# sanjeev2552

C#

 // C# implementation of the approachusing System; class GFG{         // Function that returns true if the number represented    // by the given array is divisible by y    static bool isDivisible(int [] arr, int n, int y)    {        int d = 0, i = 0;             // While there are digits left        while (i < n)        {                 // Select the next part of the number            // i.e. the maximum number which is <= y            while (d < y && i < n)                d = d * 10 + arr[i++];                 // Get the current remainder            d = d % y;        }             // If the final remainder is 0        if (d == 0)            return true;        return false;    }         // Driver code    public static void Main ()    {                 int [] arr = { 1, 2, 1, 5, 6 };        int x = arr.Length;        int y = 4;             Console.WriteLine(isDivisible(arr, x, y) ? "Yes" : "No");    }} // This code is contributed by ihritik

Javascript


Output:
Yes

My Personal Notes arrow_drop_up