Check if the given graph represents a Ring Topology
Given a graph G, the task is to check if it represents a Ring Topology.
A Ring Topology is the one shown in the image below:
Examples:
Input : Graph =
Output : YES Input : Graph =
Output : NO
A graph of V vertices represents a Ring topology if it satisfies the following three conditions:
- Number of vertices >= 3.
- All vertices should have degree 2.
- No of edges = No of Vertices.
The idea is to traverse the graph and check if it satisfies the above three conditions. If yes, then it represents a Ring Topology otherwise not.
Below is the implementation of the above approach:
C++
// C++ program to check if the given graph // represents a Ring topology #include <bits/stdc++.h> using namespace std; // A utility function to add an edge in an // undirected graph. void addEdge(vector< int > adj[], int u, int v) { adj[u].push_back(v); adj[v].push_back(u); } // A utility function to print the adjacency list // representation of graph void printGraph(vector< int > adj[], int V) { for ( int v = 0; v < V; ++v) { cout << "\n Adjacency list of vertex " << v << "\n head " ; for ( auto x : adj[v]) cout << "-> " << x; printf ( "\n" ); } } /* Function to return true if the graph represented by the adjacency list represents a Ring topology else return false */ bool checkRingTopologyUtil(vector< int > adj[], int V, int E) { // Number of edges should be equal // to Number of vertices if (E != V) return false ; // For a graph to represent a ring topology should have // greater than 2 nodes if (V <= 2) return false ; int * vertexDegree = new int [V + 1]; memset (vertexDegree, 0, sizeof vertexDegree); // calculate the degree of each vertex for ( int i = 1; i <= V; i++) { for ( auto v : adj[i]) { vertexDegree[v]++; } } // countDegree2 stores the count of // the vertices having degree 2 int countDegree2 = 0; for ( int i = 1; i <= V; i++) { if (vertexDegree[i] == 2) { countDegree2++; } } // if all three necessary conditions as discussed, // satisfy return true if (countDegree2 == V) { return true ; } else { return false ; } } // Function to check if the graph represents a Ring topology void checkRingTopology(vector< int > adj[], int V, int E) { bool isRing = checkRingTopologyUtil(adj, V, E); if (isRing) { cout << "YES" << endl; } else { cout << "NO" << endl; } } // Driver code int main() { // Graph 1 int V = 6, E = 6; vector< int > adj1[V + 1]; addEdge(adj1, 1, 2); addEdge(adj1, 2, 3); addEdge(adj1, 3, 4); addEdge(adj1, 4, 5); addEdge(adj1, 6, 1); addEdge(adj1, 5, 6); checkRingTopology(adj1, V, E); // Graph 2 V = 5, E = 4; vector< int > adj2[V + 1]; addEdge(adj2, 1, 2); addEdge(adj2, 1, 3); addEdge(adj2, 3, 4); addEdge(adj2, 4, 5); checkRingTopology(adj2, V, E); return 0; } |
Java
// Java program to check if the given graph // represents a Ring topology import java.util.*; class GFG{ // A utility function to add an edge in an // undirected graph. static void addEdge(Vector<Integer> adj[], int u, int v) { adj[u].add(v); adj[v].add(u); } // A utility function to print the adjacency list // representation of graph static void printGraph(Vector<Integer> adj[], int V) { for ( int v = 0 ; v < V; ++v) { System.out.print( "\n Adjacency list of vertex " + v + "\n head " ); for ( int x : adj[v]) System.out.print( ". " + x); System.out.printf( "\n" ); } } // Function to return true if the graph represented // by the adjacency list represents a Ring topology // else return false static boolean checkRingTopologyUtil(Vector<Integer> adj[], int V, int E) { // Number of edges should be equal // to Number of vertices if (E != V) return false ; // For a graph to represent a ring // topology should have greater // than 2 nodes if (V <= 2 ) return false ; int [] vertexDegree = new int [V + 1 ]; // Calculate the degree of each vertex for ( int i = 1 ; i <= V; i++) { for ( int v : adj[i]) { vertexDegree[v]++; } } // countDegree2 stores the count of // the vertices having degree 2 int countDegree2 = 0 ; for ( int i = 1 ; i <= V; i++) { if (vertexDegree[i] == 2 ) { countDegree2++; } } // If all three necessary conditions // as discussed, satisfy return true if (countDegree2 == V) { return true ; } else { return false ; } } // Function to check if the graph represents // a Ring topology static void checkRingTopology(Vector<Integer> adj[], int V, int E) { boolean isRing = checkRingTopologyUtil(adj, V, E); if (isRing) { System.out.print( "YES" + "\n" ); } else { System.out.print( "NO" + "\n" ); } } // Driver code public static void main(String[] args) { // Graph 1 int V = 6 , E = 6 ; @SuppressWarnings ( "unchecked" ) Vector<Integer> []adj1 = new Vector[V + 1 ]; for ( int i = 0 ; i < adj1.length; i++) adj1[i] = new Vector<Integer>(); addEdge(adj1, 1 , 2 ); addEdge(adj1, 2 , 3 ); addEdge(adj1, 3 , 4 ); addEdge(adj1, 4 , 5 ); addEdge(adj1, 6 , 1 ); addEdge(adj1, 5 , 6 ); checkRingTopology(adj1, V, E); // Graph 2 V = 5 ; E = 4 ; @SuppressWarnings ( "unchecked" ) Vector<Integer> []adj2 = new Vector[V + 1 ]; for ( int i = 0 ; i < adj2.length; i++) adj2[i] = new Vector<Integer>(); addEdge(adj2, 1 , 2 ); addEdge(adj2, 1 , 3 ); addEdge(adj2, 3 , 4 ); addEdge(adj2, 4 , 5 ); checkRingTopology(adj2, V, E); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 program to check if the given graph # represents a star topology # A utility function to add an edge in an # undirected graph. def addEdge(adj, u, v): adj[u].append(v) adj[v].append(u) # A utility function to print the adjacency list # representation of graph def printGraph(adj, V): for v in range (V): print ( "Adjacency list of vertex " ,v, "\n head " ) for x in adj[v]: print ( "-> " ,x,end = " " ) printf() # /* Function to return true if the graph represented # by the adjacency list represents a ring topology # else return false */ def checkRingTopologyUtil(adj, V, E): # Number of edges should be equal # to (Number of vertices - 1) if (E ! = (V)): return False # For a graph to represent a ring topology should have # greater than 2 nodes if (V < = 2 ): return False vertexDegree = [ 0 ] * (V + 1 ) # calculate the degree of each vertex for i in range (V + 1 ): for v in adj[i]: vertexDegree[v] + = 1 # countDegree2 stores the count of # the vertices having degree 2 countDegree2 = 0 for i in range ( 1 , V + 1 ): if (vertexDegree[i] = = 2 ): countDegree2 + = 1 # if all three necessary conditions as discussed, # satisfy return true if (countDegree2 = = V): return True else : return False # Function to check if the graph represents a ring topology def checkRingTopology(adj, V, E): isRing = checkRingTopologyUtil(adj, V, E) if (isRing): print ( "YES" ) else : print ( "NO" ) # Driver code # Graph 1 V,E = 6 , 6 adj1 = [[] for i in range (V + 1 )] addEdge(adj1, 1 , 2 ) addEdge(adj1, 2 , 3 ) addEdge(adj1, 3 , 4 ) addEdge(adj1, 4 , 5 ) addEdge(adj1, 6 , 1 ) addEdge(adj1, 5 , 6 ) checkRingTopology(adj1, V, E) # Graph 2 V,E = 5 , 4 adj2 = [[] for i in range (V + 1 )] addEdge(adj2, 1 , 2 ) addEdge(adj2, 1 , 3 ) addEdge(adj2, 3 , 4 ) addEdge(adj2, 4 , 2 ) checkRingTopology(adj2, V, E) # This code is contributed by mohit kumar 29 |
C#
// C# program to check if the given graph // represents a Ring topology using System; using System.Collections.Generic; class GFG { // A utility function to add an edge in an // undirected graph. static void addEdge(List<List< int >> adj, int u, int v ) { adj[u].Add(v); adj[v].Add(u); } // A utility function to print the adjacency list // representation of graph static void printGraph(List<List< int >> adj, int V) { for ( int v = 0; v < V; ++v) { Console.Write( "\n Adjacency list of vertex " + v + "\n head " ); foreach ( int x in adj[v]) { Console.Write( ". " + x); } Console.WriteLine(); } } // Function to return true if the graph represented // by the adjacency list represents a Ring topology // else return false static bool checkRingTopologyUtil(List<List< int >> adj, int V, int E) { // Number of edges should be equal // to Number of vertices if (E != V) return false ; // For a graph to represent a ring // topology should have greater // than 2 nodes if (V <= 2) return false ; int [] vertexDegree = new int [V + 1]; // Calculate the degree of each vertex for ( int i = 1; i <= V; i++) { foreach ( int v in adj[i]) { vertexDegree[v]++; } } // countDegree2 stores the count of // the vertices having degree 2 int countDegree2 = 0; for ( int i = 1; i <= V; i++) { if (vertexDegree[i] == 2) { countDegree2++; } } // If all three necessary conditions // as discussed, satisfy return true if (countDegree2 == V) { return true ; } else { return false ; } } // Function to check if the graph represents // a Ring topology static void checkRingTopology(List<List< int >> adj, int V, int E) { bool isRing = checkRingTopologyUtil(adj, V, E); if (isRing) { Console.Write( "YES" + "\n" ); } else { Console.Write( "NO" + "\n" ); } } // Driver code static public void Main () { // Graph 1 int V = 6, E = 6; List<List< int >> adj1 = new List<List< int >>(); for ( int i = 0; i < V + 1; i++) { adj1.Add( new List< int >() ); } addEdge(adj1, 1, 2); addEdge(adj1, 2, 3); addEdge(adj1, 3, 4); addEdge(adj1, 4, 5); addEdge(adj1, 6, 1); addEdge(adj1, 5, 6); checkRingTopology(adj1, V, E); // Graph 2 V = 6; E = 6; List<List< int >> adj2 = new List<List< int >>(); for ( int i = 0; i < V + 1; i++) { adj2.Add( new List< int >() ); } addEdge(adj2, 1, 2); addEdge(adj2, 1, 3); addEdge(adj2, 3, 4); addEdge(adj2, 4, 5); checkRingTopology(adj2, V, E); } } // This code is contributed by avanitrachhadiya2155 |
Javascript
<script> // JavaScript program to check if the given graph // represents a Ring topology // A utility function to add an edge in an // undirected graph. function addEdge(adj,u,v) { adj[u].push(v); adj[v].push(u); } // A utility function to print the adjacency list // representation of graph function printGraph(adj,V) { for (let v = 0; v < V; ++v) { document.write( "\n Adjacency list of vertex " + v + "\n head " ); for (let x=0;x<adj[v].length;x++) { document.write( "-> " + adj[v][x]); } document.write( "<br>" ); } } /* Function to return true if the graph represented by the adjacency list represents a Ring topology else return false */ function checkRingTopologyUtil(adj,V,E) { // Number of edges should be equal // to (Number of vertices - 1) if (E != V) { return false ; } // a single node is termed as a bus topology if (V <= 2) { return false ; } let vertexDegree = new Array(V + 1); for (let i=0;i<vertexDegree.length;i++) { vertexDegree[i]=0; } // calculate the degree of each vertex for (let i = 1; i <= V; i++) { for (let v=0;v<adj[i].length;v++) { vertexDegree[adj[i][v]]++; } } // countDegree2 stores the count of // the vertices having degree 2 let countDegree2 = 0; for (let i = 1; i <= V; i++) { if (vertexDegree[i] == 2) { countDegree2++; } } // If all three necessary conditions // as discussed, satisfy return true if (countDegree2 == V) { return true ; } else { return false ; } } // Function to check if the graph represents a Ring topology function checkRingTopology(adj,V,E) { let isRing = checkRingTopologyUtil(adj, V, E); if (isRing) { document.write( "YES<br>" ); } else { document.write( "NO<br>" ); } } // Driver code // Graph 1 let V = 6, E = 6; let adj1=[]; for (let i = 0; i < V + 1; i++) { adj1.push([]); } addEdge(adj1, 1, 2); addEdge(adj1, 2, 3); addEdge(adj1, 3, 4); addEdge(adj1, 4, 5); addEdge(adj1, 6, 1); addEdge(adj1, 5, 6); checkRingTopology(adj1, V, E); // Graph 2 V = 5; E = 4; let adj2 = []; for (let i = 0; i < (V + 1); i++) { adj2.push([]); } addEdge(adj2, 1, 2); addEdge(adj2, 1, 3); addEdge(adj2, 3, 4); addEdge(adj2, 4, 2); checkRingTopology(adj2, V, E); // This code is contributed by patel2127 </script> |
Output
YES NO
Complexity Analysis:
- Time Complexity: O(V + E) where V and E are the numbers of vertices and edges in the graph respectively.
- Auxiliary Space: O(V + E).
Please Login to comment...