Check if the given graph represents a Ring Topology

Given a graph G, the task is to check if it represents a Ring Topology.

A Ring Topology is the one shown in the image below:

Examples:



Input :  Graph =

Output : YES

Input : Graph = 

Output : NO

A graph of V vertices represents a Ring topology if it satisfies the following three conditions:

  1. Number of vertices >= 3.
  2. All vertices should have degree 2.
  3. No of edges = No of Vertices.

The idea is to traverse the graph and check if it satisfies the above three conditions. If yes, then it represents a Ring Topology otherwise not.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to check if the given graph
// represents a Ring topology
  
#include <bits/stdc++.h>
using namespace std;
  
// A utility function to add an edge in an
// undirected graph.
void addEdge(vector<int> adj[], int u, int v)
{
    adj[u].push_back(v);
    adj[v].push_back(u);
}
  
// A utility function to print the adjacency list
// representation of graph
void printGraph(vector<int> adj[], int V)
{
    for (int v = 0; v < V; ++v) {
        cout << "\n Adjacency list of vertex "
             << v << "\n head ";
        for (auto x : adj[v])
            cout << "-> " << x;
        printf("\n");
    }
}
  
/* Function to return true if the graph represented 
   by the adjacency list represents a Ring topology 
   else return false */
bool checkRingTopologyUtil(vector<int> adj[], int V, int E)
{
    // Number of edges should be equal
    // to Number of vertices
    if (E != V)
        return false;
  
    // For a graph to represent a ring topology should have
    // greater than 2 nodes
    if (V <= 2)
        return false;
  
    int* vertexDegree = new int[V + 1];
    memset(vertexDegree, 0, sizeof vertexDegree);
  
    // calculate the degree of each vertex
    for (int i = 1; i <= V; i++) {
        for (auto v : adj[i]) {
            vertexDegree[v]++;
        }
    }
  
    // countDegree2 stores the count of
    // the vertices having degree 2
    int countDegree2 = 0;
  
    for (int i = 1; i <= V; i++) {
        if (vertexDegree[i] == 2) {
            countDegree2++;
        }
    }
  
    // if all three necessary conditions as discussed,
    // satisfy return true
    if (countDegree2 == V) {
        return true;
    }
    else {
        return false;
    }
}
  
// Function to check if the graph represents a Ring topology
void checkRingTopology(vector<int> adj[], int V, int E)
{
    bool isRing = checkRingTopologyUtil(adj, V, E);
    if (isRing) {
        cout << "YES" << endl;
    }
    else {
        cout << "NO" << endl;
    }
}
  
// Driver code
int main()
{
    // Graph 1
    int V = 6, E = 6;
    vector<int> adj1[V + 1];
    addEdge(adj1, 1, 2);
    addEdge(adj1, 2, 3);
    addEdge(adj1, 3, 4);
    addEdge(adj1, 4, 5);
    addEdge(adj1, 6, 1);
    addEdge(adj1, 5, 6);
    checkRingTopology(adj1, V, E);
  
    // Graph 2
    V = 5, E = 4;
    vector<int> adj2[V + 1];
    addEdge(adj2, 1, 2);
    addEdge(adj2, 1, 3);
    addEdge(adj2, 3, 4);
    addEdge(adj2, 4, 5);
    checkRingTopology(adj2, V, E);
  
    return 0;
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to check if the given graph
# represents a star topology
  
# A utility function to add an edge in an
# undirected graph.
  
def addEdge(adj, u, v):
    adj[u].append(v)
    adj[v].append(u)
  
# A utility function to prthe adjacency list
# representation of graph
def printGraph(adj, V):
  
    for v in range(V):
        print("Adjacency list of vertex ",v,"\n head ")
        for x in adj[v]:
            print("-> ",x,end=" ")
        printf()
  
# /* Function to return true if the graph represented
#    by the adjacency list represents a ring topology
#    else return false */
def checkRingTopologyUtil(adj, V, E):
  
    # Number of edges should be equal
    # to (Number of vertices - 1)
    if (E != (V)):
        return False
  
    # For a graph to represent a ring topology should have
    # greater than 2 nodes
    if (V <= 2):
        return False
  
    vertexDegree = [0]*(V + 1)
  
    # calculate the degree of each vertex
    for i in range(V+1):
        for v in adj[i]:
            vertexDegree[v] += 1
      
    # countDegree2 stores the count of
    # the vertices having degree 2
    countDegree2 = 0
  
    for i in range(1, V + 1):
        if (vertexDegree[i] == 2):
            countDegree2 += 1
  
    # if all three necessary conditions as discussed,
    # satisfy return true
    if (countDegree2 == V):
        return True
    else:
        return False
  
# Function to check if the graph represents a ring topology
def checkRingTopology(adj, V, E):
  
    isRing = checkRingTopologyUtil(adj, V, E)
    if (isRing):
        print("YES")
  
    else:
        print("NO" )
  
# Driver code
  
# Graph 1
V,E = 6,6
adj1 = [[] for i in range(V + 1)]
addEdge(adj1, 1, 2)
addEdge(adj1, 2, 3)
addEdge(adj1, 3, 4)
addEdge(adj1, 4, 5)
addEdge(adj1, 6, 1)
addEdge(adj1, 5, 6)
checkRingTopology(adj1, V, E)
  
# Graph 2
V,E = 5,4
adj2 = [[] for i in range(V + 1)]
addEdge(adj2, 1, 2)
addEdge(adj2, 1, 3)
addEdge(adj2, 3, 4)
addEdge(adj2, 4, 2)
checkRingTopology(adj2, V, E)
  
# This code is contributed by mohit kumar 29

chevron_right


Output:

YES
NO

Time Complexity: O(V + E) where V and E are the numbers of vertices and edges in the graph respectively.

competitive-programming-img




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : mohit kumar 29