Open In App
Related Articles

Check if the given array is same as its inverse permutation

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given an array arr[] consisting of integers in the range [1, N], the task is to determine whether the Inverse Permutation of the given array is same as the given array. 

An inverse permutation is a permutation obtained by inserting the position of all elements at the position equal to the respective values of the element in the array.
Illustration: 
arr[] = {2, 4, 1, 3, 5} 
The inverse permutation of the array will be equal to {3, 1, 4, 2, 5} 

Examples: 

Input: N = 4, arr[] = {1, 4, 3, 2} 
Output: Yes 
Explanation: 
The inverse permutation of the given array is {1, 4, 3, 2} which is same as the given array.
Input: N = 5, arr[] = {2, 3, 4, 5, 1} 
Output: No 
Explanation: 
The inverse permutation of the given array is {5, 1, 2, 3, 4} which is not the same as the given array. 

Method 1 :

 In this method, we will generate the inverse permutation of the array, then check if it is same as the original array.

Follow the steps below to solve the problem: 

  • Find the inverse permutation of the given array.
  • Check, if the generated array is same as the original array.
  • If both are same, then print Yes. Otherwise, print No.

Below is the implementation of the above approach: 

C++

// C++ Program to implement
// the above approach
#include <iostream>
using namespace std;
 
// Function to check if the inverse
// permutation of the given array is
// same as the original array
void inverseEqual(int arr[], int n)
{
 
    // Stores the inverse
    // permutation
    int brr[n];
 
    // Generate the inverse permutation
    for (int i = 0; i < n; i++) {
        int present_index = arr[i] - 1;
        brr[present_index] = i + 1;
    }
 
    // Check if the inverse permutation
    // is same as the given array
    for (int i = 0; i < n; i++) {
        if (arr[i] != brr[i]) {
            cout << "No" << endl;
            return;
        }
    }
 
    cout << "Yes" << endl;
}
 
// Driver Code
int main()
{
 
    int n = 4;
    int arr[n] = { 1, 4, 3, 2 };
 
    inverseEqual(arr, n);
 
    return 0;
}

                    

Java

// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
 
// Function to check if the inverse
// permutation of the given array is
// same as the original array
static void inverseEqual(int arr[], int n)
{
     
    // Stores the inverse
    // permutation
    int[] brr = new int[n];
 
    // Generate the inverse permutation
    for(int i = 0; i < n; i++)
    {
        int present_index = arr[i] - 1;
        brr[present_index] = i + 1;
    }
 
    // Check if the inverse permutation
    // is same as the given array
    for(int i = 0; i < n; i++)
    {
        if (arr[i] != brr[i])
        {
            System.out.println("No");
            return;
        }
    }
    System.out.println("Yes");
}
 
// Driver code
public static void main(String[] args)
{
    int n = 4;
    int[] arr = { 1, 4, 3, 2 };
 
    inverseEqual(arr, n);
}
}
 
// This code is contributed by offbeat

                    

Python3

# Python3 program to implement
# the above approach
 
# Function to check if the inverse
# permutation of the given array is
# same as the original array
def inverseEqual(arr, n):
     
    # Stores the inverse
    # permutation
    brr = [0] * n
     
    # Generate the inverse permutation
    for i in range(n):
        present_index = arr[i] - 1
        brr[present_index] = i + 1
         
    # Check if the inverse permutation
    # is same as the given array
    for i in range(n):
        if arr[i] != brr[i]:
            print("NO")
            return
             
    print("YES")
     
# Driver code
n = 4
arr = [ 1, 4, 3, 2 ]
 
inverseEqual(arr, n)
 
# This code is contributed by Stuti Pathak

                    

C#

// C# program to implement
// the above approach
using System;
class GFG{
 
// Function to check if the inverse
// permutation of the given array is
// same as the original array
static void inverseEqual(int []arr, int n)
{
     
    // Stores the inverse
    // permutation
    int[] brr = new int[n];
 
    // Generate the inverse permutation
    for(int i = 0; i < n; i++)
    {
        int present_index = arr[i] - 1;
        brr[present_index] = i + 1;
    }
 
    // Check if the inverse permutation
    // is same as the given array
    for(int i = 0; i < n; i++)
    {
        if (arr[i] != brr[i])
        {
            Console.WriteLine("No");
            return;
        }
    }
    Console.WriteLine("Yes");
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 4;
    int[] arr = { 1, 4, 3, 2 };
 
    inverseEqual(arr, n);
}
}
 
// This code is contributed by sapnasingh4991

                    

Javascript

<script>
 
// Javascript Program to implement
// the above approach
 
// Function to check if the inverse
// permutation of the given array is
// same as the original array
function inverseEqual(arr, n)
{
 
    // Stores the inverse
    // permutation
    var brr = Array(n).fill(0);
 
    // Generate the inverse permutation
    for (var i = 0; i < n; i++) {
        var present_index = arr[i] - 1;
        brr[present_index] = i + 1;
    }
 
    // Check if the inverse permutation
    // is same as the given array
    for (var i = 0; i < n; i++) {
        if (arr[i] != brr[i]) {
            document.write( "No" );
            return;
        }
    }
 
    document.write( "Yes" );
}
 
// Driver Code
var n = 4;
var arr = [ 1, 4, 3, 2 ];
inverseEqual(arr, n);
 
// This code is contributed by noob2000.
</script>

                    

Output
Yes

Time Complexity: O(N) 
Auxiliary Space: O(N)


 Method 2 :

In this method, we take elements one by one and check for elements if at (arr[i] -1) index i+1 is present or not . If not then the inverse permutation of the given array is not the same as the array.

Below is the implementation of the above approach:

C++

// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if the inverse
// permutation of the given array is
// same as the original array
bool inverseEqual(int arr[], int n)
{
 
    // Check the if inverse permutation is not same
    for (int i = 0; i < n; i++)
        if (arr[arr[i] - 1] != i + 1)
            return false;
 
    return true;
}
 
// Driver Code
int main()
{
    int n = 4;
    int arr[n] = { 1, 4, 3, 2 };
 
    // Function Call
    cout << (inverseEqual(arr, n) ? "Yes" : "No");
 
    return 0;
}

                    

Java

/*package whatever //do not write package name here */
import java.io.*;
 
class GFG
{
 
  // Java program to implement
  // the above approach
 
  // Function to check if the inverse
  // permutation of the given array is
  // same as the original array
  static boolean inverseEqual(int[] arr,int n){
 
    // Check the if inverse permutation
    // is not same
    for(int i=0;i<n;i++){
      if (arr[arr[i] - 1] != i + 1)
        return false;
    }
 
    return true;
  }
 
  // Driver code
  public static void main(String args[])
  {
    int n = 4;
    int[] arr = { 1, 4, 3, 2 };
 
    // Function Call
    System.out.println((inverseEqual(arr, n)==true)?"Yes" : "No");
  }
}
 
// This Code is contributed by shinjanpatra

                    

Python3

# Python program to implement
# the above approach
 
# Function to check if the inverse
# permutation of the given array is
# same as the original array
def inverseEqual(arr, n):
 
    # Check the if inverse permutation
    # is not same
    for i in range(n):
        if (arr[arr[i] - 1] != i + 1):
            return False
 
    return True
 
# Driver Code
n = 4
arr = [ 1, 4, 3, 2 ]
 
# Function Call
print("Yes" if (inverseEqual(arr, n)==True) else "No")
 
# This code is contributed by shinjanpatra

                    

C#

// C# Program to implement
// the above approach
 
using System;
class GFG
{
// Function to check if the inverse
// permutation of the given array is
// same as the original array
static bool inverseEqual(int[] arr,int n){
 
    // Check the if inverse permutation is not same
    for(int i=0;i<n;i++){
    if (arr[arr[i] - 1] != i + 1)
        return false;
    }
 
    return true;
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 4;
    int[] arr = { 1, 4, 3, 2 };
 
    // Function Call
    Console.WriteLine((inverseEqual(arr, n)==true)?"Yes" : "No");
}
}
 
// This Code is contributed by Pushpesh Raj.

                    

Javascript

<script>
 
// Javascript program to implement
// the above approach
 
// Function to check if the inverse
// permutation of the given array is
// same as the original array
function inverseEqual(arr, n)
{
  
    // Check the if inverse permutation
    // is not same
    for (let i = 0; i < n; i++)
        if (arr[arr[i] - 1] != i + 1)
            return false;
  
    return true;
}
 
    // Driver Code
     
    let n = 4;
    let arr = [ 1, 4, 3, 2 ];
  
    // Function Call
    document.write(inverseEqual(arr, n) ? "Yes" : "No");
 
</script>

                    

Output
Yes

Time Complexity: O(N) 

Auxiliary Space: O(1)



Last Updated : 05 Sep, 2022
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads