Check if an integer can be expressed as a sum of two semi-primes

Given a positive integer N, check if it can be expressed as a sum of two semi-primes or not.

Semi-primes A number is said to be a semi-prime if it can be expressed as product of two primes number ( not necessarily distinct ).

Semi-primes in the range 1 -100 are:

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95.

Examples:

Input : N = 30
Output: YES
Explanation: 30 can be expressed as '15 + 15' 
15 is semi-primes as 15 is a product of two primes 3 and 5.

Input : N = 45
Output : YES
Explanation: 45 can be expressed as '35 + 10'
35 and 10 are also  semi-primes as it can a be expressed 
as product of two primes:
       35 = 5 * 7
       10 = 2 * 5   

Prerequisite:

A Simple Solution is to traverse form i=1 to N and check if i and N-i are semi-primes or not. If yes, print i and n-i.

An Efficient Solution is to pre-compute semi-primes in an array up to the given range and then traverse the semi-prime array and check if n-arr[i] is semi-prime or not. As, arr[i] is already a semi-prime if n-arr[i] is also a semi-prime, then n can be expressed as sum of two semi-primes.

Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP Code to check if an integer
// can be expressed as sum of
// two semi-primes
  
#include <bits/stdc++.h>
using namespace std;
#define MAX 1000000
  
vector<int> arr;
bool sprime[MAX];
  
// Utility function to compute
// semi-primes in a range
void computeSemiPrime()
{
    memset(sprime, false, sizeof(sprime));
  
    for (int i = 2; i < MAX; i++) {
  
        int cnt = 0;
        int num = i;
        for (int j = 2; cnt < 2 && j * j <= num; ++j) {
            while (num % j == 0) {
                num /= j, ++cnt; // Increment count
                // of prime numbers
            }
        }
  
        // If number is greater than 1, add it to
        // the count variable as it indicates the
        // number remain is prime number
  
        if (num > 1)
            ++cnt;
  
        // if count is equal to '2' then
        // number is semi-prime
  
        if (cnt == 2) {
  
            sprime[i] = true;
            arr.push_back(i);
        }
    }
}
  
// Utility function to check
// if a number sum of two
// semi-primes
bool checkSemiPrime(int n)
{
    int i = 0;
  
    while (arr[i] <= n / 2) {
  
        // arr[i] is already a semi-prime
        // if n-arr[i] is also a semi-prime
        // then we a number can be expressed as
        // sum of two semi-primes
  
        if (sprime[n - arr[i]]) {
            return true;
        }
  
        i++;
    }
  
    return false;
}
  
// Driver code
int main()
{
    computeSemiPrime();
  
    int n = 30;
    if (checkSemiPrime(n))
        cout << "YES";
    else
        cout << "NO";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Code to check if an integer
// can be expressed as sum of
// two semi-primes
  
import java.util.*;
  
class GFG {
  
    static final int MAX = 1000000;
    static Vector<Integer> arr = new Vector<>();
    static boolean[] sprime = new boolean[MAX];
  
    // Utility function to compute
    // semi-primes in a range
    static void computeSemiPrime()
    {
  
        for (int i = 0; i < MAX; i++)
            sprime[i] = false;
  
        for (int i = 2; i < MAX; i++) {
  
            int cnt = 0;
            int num = i;
            for (int j = 2; cnt < 2 && j * j <= num; ++j) {
                while (num % j == 0) {
                    num /= j;
                    ++cnt;
                    // Increment count
                    // of prime numbers
                }
            }
  
            // If number is greater than 1, add it to
            // the count variable as it indicates the
            // number remain is prime number
  
            if (num > 1)
                ++cnt;
  
            // if count is equal to '2' then
            // number is semi-prime
  
            if (cnt == 2) {
  
                sprime[i] = true;
                arr.add(i);
            }
        }
    }
  
    // Utility function to check
    // if a number is sum of two
    // semi-primes
    static boolean checkSemiPrime(int n)
    {
        int i = 0;
  
        while (arr.get(i) <= n / 2) {
  
            // arr[i] is already a semi-prime
            // if n-arr[i] is also a semi-prime
            // then we a number can be expressed as
            // sum of two semi-primes
  
            if (sprime[n - arr.get(i)]) {
                return true;
            }
  
            i++;
        }
  
        return false;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        computeSemiPrime();
  
        int n = 30;
        if (checkSemiPrime(n))
            System.out.println("YES");
        else
            System.out.println("NO");
    }
}

chevron_right


Python3

# Python3 Code to check if an integer can
# be expressed as sum of two semi-primes
MAX = 10000

arr = []
sprime = [False] * (MAX)

# Utility function to compute
# semi-primes in a range
def computeSemiPrime():

for i in range(2, MAX):

cnt, num, j = 0, i, 2
while cnt < 2 and j * j <= num: while num % j == 0: num /= j # Increment count of prime numbers cnt += 1 j += 1 # If number is greater than 1, add it # to the count variable as it indicates # the number remain is prime number if num > 1:
cnt += 1

# if count is equal to ‘2’ then
# number is semi-prime
if cnt == 2:

sprime[i] = True
arr.append(i)

# Utility function to check
# if a number sum of two
# semi-primes
def checkSemiPrime(n):

i = 0
while arr[i] <= n // 2: # arr[i] is already a semi-prime # if n-arr[i] is also a semi-prime # then we a number can be expressed as # sum of two semi-primes if sprime[n - arr[i]] == True: return True i += 1 return False # Driver code if __name__ == "__main__": computeSemiPrime() n = 30 if checkSemiPrime(n) == True: print("YES") else: print("NO") # This code is contributed by # Rituraj Jain [tabby title="C#"]

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Code to check if an integer
// can be expressed as sum of
// two semi-primes
using System.Collections.Generic;
  
class GFG 
{
  
static int MAX = 1000000;
static List<int> arr = new List<int>();
static bool[] sprime = new bool[MAX];
  
// Utility function to compute
// semi-primes in a range
static void computeSemiPrime()
{
  
    for (int i = 0; i < MAX; i++)
        sprime[i] = false;
  
    for (int i = 2; i < MAX; i++) 
    {
  
        int cnt = 0;
        int num = i;
        for (int j = 2; cnt < 2 && j * j <= num; ++j)
        {
            while (num % j == 0) 
            {
                num /= j;
                ++cnt;
                  
                // Increment count
                // of prime numbers
            }
        }
  
        // If number is greater than 1, add it to
        // the count variable as it indicates the
        // number remain is prime number
        if (num > 1)
            ++cnt;
  
        // if count is equal to '2' then
        // number is semi-prime
  
        if (cnt == 2) 
        {
            sprime[i] = true;
            arr.Add(i);
        }
    }
}
  
// Utility function to check
// if a number is sum of two
// semi-primes
static bool checkSemiPrime(int n)
{
    int i = 0;
  
    while (arr[i] <= n / 2) 
    {
  
        // arr[i] is already a semi-prime
        // if n-arr[i] is also a semi-prime
        // then we a number can be expressed as
        // sum of two semi-primes
  
        if (sprime[n - arr[i]]) 
        {
            return true;
        }
  
        i++;
    }
  
    return false;
}
  
// Driver code
public static void Main()
{
    computeSemiPrime();
  
    int n = 30;
    if (checkSemiPrime(n))
        System.Console.WriteLine("YES");
    else
        System.Console.WriteLine("NO");
}
}
  
// This code is contributed by mits

chevron_right


Output:

YES


My Personal Notes arrow_drop_up

self motivated and passionate programmer

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Mithun Kumar, rituraj_jain