Check if a prime number can be expressed as sum of two Prime Numbers

Given a prime number N. The task is to check if it is possible to express N as sum of two separate prime numbers.

Note: The range of N is less than 108.

Examples:



Input : N = 13
Output : Yes
Explanation : The number 13 can be written as 11 + 2, 
here 11 and 2 are both prime.

Input : N = 11
Output : No

Simple Solution: A simple solution is to create a sieve to store all the prime numbers less than the number N. Then run a loop from 1 to N and check whether i and n-i are both prime or not. If yes then print Yes, else No.

Efficient solution: Apart from 2, all of the prime numbers are odd. So it is not possible to represent a prime number (which is odd) to be written as a sum of two odd prime numbers, so we are sure that one of the two prime number should be 2. So we have to check whether n-2 is prime or not. If it holds we print Yes else No.

For example, if the number is 19 then we have to check whether 19-2 = 17 is a prime number or not. If 17 is a prime number then print yes otherwise print no.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to check if a prime number
// can be expressed as sum of
// two Prime Numbers
#include <bits/stdc++.h>
using namespace std;
  
// Function to check whether a number
// is prime or not
bool isPrime(int n)
{
    if (n <= 1)
        return false;
  
    for (int i = 2; i <= sqrt(n); i++) {
        if (n % i == 0)
            return false;
    }
  
    return true;
}
  
// Function to check if a prime number
// can be expressed as sum of
// two Prime Numbers
bool isPossible(int N)
{
    // if the number is prime,
    // and number-2 is also prime
    if (isPrime(N) && isPrime(N - 2))
        return true;
    else
        return false;
}
  
// Driver code
int main()
{
    int n = 13;
  
    if (isPossible(n))
        cout << "Yes";
    else
        cout << "No";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to check if a prime number
// can be expressed as sum of
// two Prime Numbers
  
public class GFG{
      
    // Function to check whether a number
    // is prime or not
    static boolean isPrime(int n)
    {
        if (n <= 1)
            return false;
      
        for (int i = 2; i <= Math.sqrt(n); i++) {
            if (n % i == 0)
                return false;
        }
      
        return true;
    }
      
    // Function to check if a prime number
    // can be expressed as sum of
    // two Prime Numbers
    static boolean isPossible(int N)
    {
        // if the number is prime,
        // and number-2 is also prime
        if (isPrime(N) && isPrime(N - 2))
            return true;
        else
            return false;
    }
      
     // Driver code
     public static void main(String []args){
           
        int n = 13;
      
        if (isPossible(n) == true)
            System.out.println("Yes");
        else
            System.out.println("No");
     }
     // This code is contributed by ANKITRAI1
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to check if a prime 
# number can be expressed as sum of 
# two Prime Numbers 
import math
  
# Function to check whether a number 
# is prime or not 
def isPrime(n):
    if n <= 1:
        return False
    for i in range(2, (int)(math.sqrt(n))):
        if n % i == 0:
            return False
    return True
  
# Function to check if a prime number 
# can be expressed as sum of 
# two Prime Numbers 
def isPossible(n):
  
    # if the number is prime, 
    # and number-2 is also prime 
    if isPrime(n) and isPrime(n - 2):
        return True
    else:
        return False
  
# Driver code
n = 13
if isPossible(n) == True:
    print("Yes")
else:
    print("No")
      
# This code is contributed by Shrikant13

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to check if a prime 
// number can be expressed as sum 
// of two Prime Numbers
using System;
  
class GFG
{
  
// Function to check whether a 
// number is prime or not
static bool isPrime(int n)
{
    if (n <= 1)
        return false;
  
    for (int i = 2; 
             i <= Math.Sqrt(n); i++) 
    {
        if (n % i == 0)
            return false;
    }
  
    return true;
}
  
// Function to check if a prime 
// number can be expressed as sum 
// of two Prime Numbers
static bool isPossible(int N)
{
    // if the number is prime,
    // and number-2 is also prime
    if (isPrime(N) && isPrime(N - 2))
        return true;
    else
        return false;
}
  
// Driver code
public static void Main()
{
    int n = 13;
  
    if (isPossible(n) == true)
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
  
// This code is contributed 
// by ChitraNayal

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to check if a prime 
// number can be expressed as sum 
// of two Prime Numbers
  
// Function to check whether a 
// number is prime or not
function isPrime($n)
{
    if ($n <= 1)
        return false;
  
    for ($i = 2; $i <= sqrt($n); $i++) 
    {
        if ($n % $i == 0)
            return false;
    }
  
    return true;
}
  
// Function to check if a prime 
// number can be expressed as sum 
// of two Prime Numbers
function isPossible($N)
{
    // if the number is prime,
    // and number-2 is also prime
    if (isPrime($N) && isPrime($N - 2))
        return true;
    else
        return false;
}
  
// Driver code
$n = 13;
  
if (isPossible($n))
    echo ("Yes");
else
    echo("No");
  
// This code is contributed 
// by Shivi_Aggarwal 
?>

chevron_right


Output:

Yes


My Personal Notes arrow_drop_up

Second year Department of Information Technology Jadavpur University

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.