Open In App
Related Articles

Check if all the pairs of an array are coprime with each other

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given an array arr[], the task is to check if all the pairs of an array are coprime to each other. All pairs of an array are coprime when GCD(arr[i], arr[j]) = 1 holds for every pair (i, j), such that 1? i < j ? N.

Examples:

Input: arr[] = {1, 3, 8}
Output: Yes
Explanation:
Here, GCD(arr[0], arr[1]) = GCD(arr[0], arr[2]) = GCD(arr[1], arr[2]) = 1
Hence, all the pairs are coprime to each other.

Input: arr[] = {6, 67, 24, 1}
Output: No

Naive Approach: A simple solution is to iterate over every pair (A[i], A[j]) from the given array and check if the gcd(A[i], A[j]) = 1 or not. Therefore, the only positive integer(factor) that divides both of them is 1.

Below is the implementation of the naive approach:

C++

// C++ implementation of the
// above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if all the
// pairs of the array are coprime
// with each other or not
bool allCoprime(int A[], int n)
{
    bool all_coprime = true;
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
 
            // Check if GCD of the
            // pair is not equal to 1
            if (__gcd(A[i], A[j]) != 1) {
 
                // All pairs are non-coprime
                // Return false
                all_coprime = false;
                break;
            }
        }
    }
    return all_coprime;
}
 
// Driver Code
int main()
{
    int A[] = { 3, 5, 11, 7, 19 };
    int arr_size = sizeof(A) / sizeof(A[0]);
    if (allCoprime(A, arr_size)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
    return 0;
}

                    

Java

// Java implementation of the
// above approach
import java.util.*;
import java.lang.*;
 
class GFG{
 
// Function to check if all the
// pairs of the array are coprime
// with each other or not
static boolean allCoprime(int A[], int n)
{
    boolean all_coprime = true;
    for(int i = 0; i < n; i++)
    {
        for(int j = i + 1; j < n; j++)
        {
             
            // Check if GCD of the
            // pair is not equal to 1
            if (gcd(A[i], A[j]) != 1)
            {
                 
                // All pairs are non-coprime
                // Return false
                all_coprime = false;
                break;
            }
        }
    }
    return all_coprime;
}
 
// Function return gcd of two number
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
         
    return gcd(b, a % b);
}
 
// Driver Code
public static void main (String[] args)
{
    int A[] = { 3, 5, 11, 7, 19 };
    int arr_size = A.length;
     
    if (allCoprime(A, arr_size))
    {
        System.out.println("Yes");
    }
    else
    {
        System.out.println("No");
    }
}
}
 
// This code is contributed by offbeat

                    

Python3

# Python3 implementation of the
# above approach
def gcd(a, b):
     
    if (b == 0):
        return a
    else:
        return gcd(b, a % b)
  
# Function to check if all the
# pairs of the array are coprime
# with each other or not
def allCoprime(A, n):
      
    all_coprime = True
      
    for i in range(n):
        for j in range(i + 1, n):
              
            # Check if GCD of the
            # pair is not equal to 1
            if gcd(A[i], A[j]) != 1:
   
                # All pairs are non-coprime
                # Return false
                all_coprime = False;
                break
      
    return all_coprime
 
# Driver code  
if __name__=="__main__":
      
    A = [ 3, 5, 11, 7, 19 ]
    arr_size = len(A)
     
    if (allCoprime(A, arr_size)):
        print('Yes')
    else:
        print('No')
 
# This code is contributed by rutvik_56

                    

C#

// C# implementation of the
// above approach
using System;
class GFG{
 
// Function to check if all the
// pairs of the array are coprime
// with each other or not
static bool allCoprime(int []A,
                       int n)
{
  bool all_coprime = true;
  for(int i = 0; i < n; i++)
  {
    for(int j = i + 1; j < n; j++)
    {
      // Check if GCD of the
      // pair is not equal to 1
      if (gcd(A[i], A[j]) != 1)
      {
        // All pairs are non-coprime
        // Return false
        all_coprime = false;
        break;
      }
    }
  }
  return all_coprime;
}
 
// Function return gcd of two number
static int gcd(int a, int b)
{
  if (b == 0)
    return a;
 
  return gcd(b, a % b);
}
 
// Driver Code
public static void Main(String[] args)
{
  int []A = {3, 5, 11, 7, 19};
  int arr_size = A.Length;
 
  if (allCoprime(A, arr_size))
  {
    Console.WriteLine("Yes");
  }
  else
  {
    Console.WriteLine("No");
  }
}
}
 
// This code is contributed by Rajput-Ji

                    

Javascript

<script>
// JavaScript implementation of the
// above approach
 
function gcd(a, b) {
  if (!b) {
    return a;
  }
 
  return gcd(b, a % b);
}
 
// Function to check if all the
// pairs of the array are coprime
// with each other or not
function allCoprime( A, n)
{
    var all_coprime = true;
    for (var i = 0; i < n; i++) {
        for (var j = i + 1; j < n; j++) {
 
            // Check if GCD of the
            // pair is not equal to 1
            if (gcd(A[i], A[j]) != 1) {
 
                // All pairs are non-coprime
                // Return false
                all_coprime = false;
                break;
            }
        }
    }
    return all_coprime;
}
 
/* Driver Program */
 
var A = [ 3, 5, 11, 7, 19 ];
var arr_size = A.length;
if (allCoprime(A, arr_size)) {
    console.log("Yes");
}
else {
    console.log( "No");
}
 
// This code is contributed by ukasp.
</script>

                    

Output: 
Yes


 Time Complexity: O(N2 logN)
Auxiliary Space: O(1)

Efficient Approach: The key observation in the problem is that two numbers are said to be co-prime if only positive integer(factor) that divides both of them is 1. So, we can store the factors of each element of the array in the container(set, array, etc.) including this element, and check if this factor is already present or not.

Illustration: 

For the array arr[] = {6, 5, 10, 3} 
Since the pairs (6, 10), (6, 3) and (5, 10) have common factors, all pairs from the array are not coprime with each other.

Below is the implementation of the above approach: 

C++

// C++ implementation of the
// above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to store and
// check the factors
bool findFactor(int value,
                unordered_set<int>& factors)
{
    factors.insert(value);
    for (int i = 2; i * i <= value; i++) {
        if (value % i == 0) {
 
            // Check if factors are equal
            if (value / i == i) {
 
                // Check if the factor is
                // already present
                if (factors.find(i)
                    != factors.end()) {
                    return true;
                }
                else {
 
                    // Insert the factor in set
                    factors.insert(i);
                }
            }
            else {
 
                // Check if the factor is
                // already present
                if (factors.find(i) != factors.end()
                    || factors.find(value / i)
                           != factors.end()) {
                    return true;
                }
                else {
 
                    // Insert the factors in set
                    factors.insert(i);
                    factors.insert(value / i);
                }
            }
        }
    }
    return false;
}
 
// Function to check if all the
// pairs of array elements
// are coprime with each other
bool allCoprime(int A[], int n)
{
    bool all_coprime = true;
    unordered_set<int> factors;
    for (int i = 0; i < n; i++) {
        if (A[i] == 1)
            continue;
 
        // Check if factors of A[i]
        // haven't occurred previously
        if (findFactor(A[i], factors)) {
            all_coprime = false;
            break;
        }
    }
    return all_coprime;
}
 
// Driver Code
int main()
{
    int A[] = { 3, 5, 11, 7, 19 };
    int arr_size = sizeof(A) / sizeof(A[0]);
    if (allCoprime(A, arr_size)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
    return 0;
}

                    

Java

// Java implementation of
// the above approach
import java.util.*;
class GFG{
 
// Function to store and
// check the factors
static boolean findFactor(int value,
                          HashSet<Integer> factors)
{
  factors.add(value);
  for (int i = 2; i * i <= value; i++)
  {
    if (value % i == 0)
    {
      // Check if factors are equal
      if (value / i == i)
      {
        // Check if the factor is
        // already present
        if (factors.contains(i))
        {
          return true;
        }
        else
        {
          // Insert the factor in set
          factors.add(i);
        }
      }
      else
      {
        // Check if the factor is
        // already present
        if (factors.contains(i) ||
            factors.contains(value / i))
        {
          return true;
        }
        else
        {
          // Insert the factors in set
          factors.add(i);
          factors.add(value / i);
        }
      }
    }
  }
  return false;
}
 
// Function to check if all the
// pairs of array elements
// are coprime with each other
static boolean allCoprime(int A[], int n)
{
  boolean all_coprime = true;
  HashSet<Integer> factors =
          new HashSet<Integer>();
  for (int i = 0; i < n; i++)
  {
    if (A[i] == 1)
      continue;
 
    // Check if factors of A[i]
    // haven't occurred previously
    if (findFactor(A[i], factors))
    {
      all_coprime = false;
      break;
    }
  }
  return all_coprime;
}
 
// Driver Code
public static void main(String[] args)
{
  int A[] = {3, 5, 11, 7, 19};
  int arr_size = A.length;
  if (allCoprime(A, arr_size))
  {
    System.out.print("Yes");
  }
  else
  {
    System.out.print("No");
  }
}
}
 
// This code is contributed by shikhasingrajput

                    

Python3

# Python3 implementation of
# the above approach
 
# Function to store and
# check the factors
def findFactor(value, factors):
 
    factors.add(value)
    i = 2
    while(i * i <= value):
       
      if value % i == 0:
         
            # Check if factors are equal
            if value // i == i:
               
              # Check if the factor is
              # already present
              if i in factors:
                  return bool(True)
              else:
                 
                  # Insert the factor in set
                  factors.add(i)
            else:   
               
                # Check if the factor is
                # already present
                if (i in factors) or
                   ((value // i) in factors):               
                  return bool(True)               
                else :
                 
                  # Insert the factors in set
                  factors.add(i)
                  factors.add(value // i)
                   
      i += 1     
    return bool(False)
 
# Function to check if all the
# pairs of array elements
# are coprime with each other
def allCoprime(A, n):
 
  all_coprime = bool(True)
  factors = set()
   
  for i in range(n):     
    if A[i] == 1:
        continue
  
    # Check if factors of A[i]
    # haven't occurred previously
    if findFactor(A[i], factors):   
      all_coprime = bool(False)
      break
   
  return bool(all_coprime)
  
# Driver code
A = [3, 5, 11, 7, 19]
arr_size = len(A)
 
if (allCoprime(A, arr_size)):
    print("Yes")
else:
    print("No")
 
# This code is contributed by divyeshrabadiya07

                    

C#

// C# implementation of
// the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to store and
// check the factors
static bool findFactor(int value,
               HashSet<int> factors)
{
    factors.Add(value);
    for(int i = 2; i * i <= value; i++)
    {
        if (value % i == 0)
        {
             
            // Check if factors are equal
            if (value / i == i)
            {
                 
                // Check if the factor is
                // already present
                if (factors.Contains(i))
                {
                    return true;
                }
                else
                {
                     
                    // Insert the factor in set
                    factors.Add(i);
                }
            }
            else
            {
                 
                // Check if the factor is
                // already present
                if (factors.Contains(i) ||
                    factors.Contains(value / i))
                {
                    return true;
                }
                else
                {
                    // Insert the factors in set
                    factors.Add(i);
                    factors.Add(value / i);
                }
            }
        }
    }
    return false;
}
 
// Function to check if all the
// pairs of array elements
// are coprime with each other
static bool allCoprime(int []A, int n)
{
    bool all_coprime = true;
    HashSet<int> factors = new HashSet<int>();
     
    for(int i = 0; i < n; i++)
    {
        if (A[i] == 1)
            continue;
             
        // Check if factors of A[i]
        // haven't occurred previously
        if (findFactor(A[i], factors))
        {
            all_coprime = false;
            break;
        }
    }
    return all_coprime;
}
 
// Driver Code
public static void Main(String[] args)
{
    int []A = { 3, 5, 11, 7, 19 };
    int arr_size = A.Length;
     
    if (allCoprime(A, arr_size))
    {
        Console.Write("Yes");
    }
    else
    {
        Console.Write("No");
    }
}
}
 
// This code is contributed by Amit Katiyar

                    

Javascript

// JS implementation of the
// above approach
 
// Function to store and
// check the factors
function findFactor(value, factors)
{
    factors.add(value);
    for (var i = 2; i * i <= value; i++) {
        if (value % i == 0) {
 
            // Check if factors are equal
            if (value == i * i) {
 
                // Check if the factor is
                // already present
                if (factors.has(i)) {
                    return true;
                }
                else {
 
                    // Insert the factor in set
                    factors.add(i);
                }
            }
            else {
 
                // Check if the factor is
                // already present
                if (factors.has(i)
                    || factors.has(Math.floor(value / i))){
                    return true;
                }
                else {
 
                    // Insert the factors in set
                    factors.add(i);
                    factors.add(Math.floor(value / i));
                }
            }
        }
    }
    return false;
}
 
// Function to check if all the
// pairs of array elements
// are coprime with each other
function allCoprime(A, n)
{
    let all_coprime = true;
    let factors = new Set();
    for (var i = 0; i < n; i++) {
        if (A[i] == 1)
            continue;
 
        // Check if factors of A[i]
        // haven't occurred previously
        if (findFactor(A[i], factors)) {
            all_coprime = false;
            break;
        }
    }
    return all_coprime;
}
 
// Driver Code
let A = [ 3, 5, 11, 7, 19 ];
let arr_size = A.length
if (allCoprime(A, arr_size)) {
    console.log("Yes");
}
else {
    console.log("No");
}
 
// This code is contributed by phasing17.

                    

Output: 
Yes

Time Complexity: O(N3/2)
Auxiliary Space: O(N)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!


Last Updated : 19 Dec, 2022
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads
Complete Tutorials