Check if bits in range L to R of two numbers are complement of each other or not

Given two non-negative numbers a and b and two values l and r. The problem is to check whether all bits at corresponding positions in the range l to r in both the given numbers are complement of each other or not.

The bits are numbered from right to left, i.e., the least significant bit is considered to be at first position.

Examples:



Input: a = 10, b = 5
       l = 1, r = 3
Output: Yes
(10)10 = (1010)2
(5)10 = (101)2 = (0101)2
All the bits in the range 1 to 3 are complement of each other.

Input: a = 21, b = 13
       l = 2, r = 4
Output: No
(21)10 = (10101)2
(13)10 = (1101)2 = (1101)2
All the bits in the range 2 to 4 are not complement of each other.

Approach: Below are the steps to solve the problem

  • Calculate xor_value = a ^ b.
  • Check whether all the bits are set or not in the range l to r in xor_value. Refer this post.

Below is the implementation of the above approach.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to check 
// whether all the bits in the given range
// of two numbers are complement of each other
#include <bits/stdc++.h>
using namespace std;
  
// function to check whether all the bits
// are set in the given range or not
bool allBitsSetInTheGivenRange(unsigned int n,
                               unsigned int l, 
                               unsigned int r)
{
    // calculating a number 'num' having 'r'
    // number of bits and bits in the range l
    // to r are the only set bits
    int num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1);
  
    // new number which will only have one or more
    // set bits in the range l to r and nowhere else
    int new_num = n & num;
  
    // if both are equal, then all bits are set
    // in the given range
    if (num == new_num)
        return true;
  
    // else all bits are not set
    return false;
}
  
// function to check whether all the bits in the given range
// of two numbers are complement of each other
bool bitsAreComplement(unsigned int a, unsigned int b,
                       unsigned int l, unsigned int r)
{
    unsigned int xor_value = a ^ b;
    return allBitsSetInTheGivenRange(xor_value, l, r);
}
  
// Driver Code
int main()
{
    unsigned int a = 10, b = 5;
    unsigned int l = 1, r = 3;
  
    if (bitsAreComplement(a, b, l, r))
        cout << "Yes";
    else
        cout << "No";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to check 
// whether all the bits in the 
// given range of two numbers 
// are complement of each other
class GFG
{
// function to check whether 
// all the bits are set in 
// the given range or not
static boolean allBitsSetInTheGivenRange(int n,
                                         int l, int r)
{
    // calculating a number 'num'
    // having 'r' number of bits 
    // and bits in the range l
    // to r are the only set bits
    int num = ((1 << r) - 1) ^ 
              ((1 << (l - 1)) - 1);
  
    // new number which will only 
    // have one or more set bits 
    // in the range l to r and 
    // nowhere else
    int new_num = n & num;
  
    // if both are equal, 
    // then all bits are set
    // in the given range
    if (num == new_num)
        return true;
  
    // else all bits are not set
    return false;
}
  
// function to check whether all 
// the bits in the given range
// of two numbers are complement 
// of each other
static boolean bitsAreComplement(int a, int b,
                                 int l, int r)
{
    int xor_value = a ^ b;
    return allBitsSetInTheGivenRange(xor_value, l, r);
}
  
// Driver Code
public static void main(String []args)
{
    int a = 10, b = 5;
    int l = 1, r = 3;
  
    if (bitsAreComplement(a, b, l, r))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
  
// This code is contributed by Smitha

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation to check whether 
# all the bits in the given range of two 
# numbers are complement of each other
  
# function to check whether all the bits
# are set in the given range or not
def allBitsSetInTheGivenRange(n, l, r):
      
    # calculating a number 'num' having 'r'
    # number of bits and bits in the range l
    # to r are the only set bits
    num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1)
  
    # new number which will only have one 
    # or more set bits in the range l to r
    # and nowhere else
    new_num = n & num
  
    # if both are equal, then all bits 
    # are set in the given range
    if (num == new_num):
        return True
  
    # else all bits are not set
    return False
  
# function to check whether all the bits 
# in the given range of two numbers are 
# complement of each other
def bitsAreComplement(a, b, l, r):
    xor_value = a ^ b
    return allBitsSetInTheGivenRange(xor_value, l, r)
  
# Driver Code
if __name__ == "__main__":
      
    a = 10
    b = 5
    l = 1
    r = 3
  
    if (bitsAreComplement(a, b, l, r)):
        print("Yes")
    else:
        print("No")
  
# This code is contributed by ita_c

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to check 
// whether all the bits in the 
// given range of two numbers 
// are complement of each other 
using System;
  
class GFG
{
// function to check whether 
// all the bits are set in 
// the given range or not 
static bool allBitsSetInTheGivenRange(int n, int l,
                                      int r) 
    // calculating a number 'num' 
    // having 'r' number of bits 
    // and bits in the range l 
    // to r are the only set bits 
    int num = ((1 << r) - 1) ^ 
              ((1 << (l - 1)) - 1); 
  
    // new number which will only 
    // have one or more set bits 
    // in the range l to r and 
    // nowhere else 
    int new_num = n & num; 
  
    // if both are equal, 
    // then all bits are set 
    // in the given range 
    if (num == new_num) 
        return true
  
    // else all bits are not set 
    return false
  
// function to check whether all 
// the bits in the given range 
// of two numbers are complement 
// of each other 
static bool bitsAreComplement(int a, int b, 
                              int l, int r) 
    int xor_value = a ^ b; 
    return allBitsSetInTheGivenRange(xor_value, l, r); 
  
// Driver Code 
static public void Main ()
{
    int a = 10, b = 5; 
    int l = 1, r = 3; 
      
    if (bitsAreComplement(a, b, l, r)) 
        Console.WriteLine("Yes"); 
    else
        Console.WriteLine("No"); 
  
// This code is contributed 
// by Ajit Deshpal.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation to check 
// whether all the bits in the
// given range of two numbers
// are complement of each other 
  
// function to check whether
// all the bits are set in 
// the given range or not 
function allBitsSetInTheGivenRange($n, $l ,$r
      
    // calculating a number
    // 'num' having 'r' number
    // of bits and bits in 
    // the range l to r are 
    // the only set bits 
    $num = ((1 << $r) - 1) ^ 
       ((1 << ($l - 1)) - 1); 
  
    // new number which will 
    // only have one or more 
    // set bits in the range
    // l to r and nowhere else 
    $new_num = ($n & $num); 
  
    // if both are equal,
    // then all bits are set 
    // in the given range 
    if ($num == $new_num
        return true; 
  
    // else all bits
    // are not set 
    return false; 
  
// function to check whether
// all the bits in the given range 
// of two numbers are complement 
// of each other 
function bitsAreComplement($a, $b,$l, $r
    $xor_value = $a ^ $b
    return allBitsSetInTheGivenRange($xor_value, $l, $r); 
  
// Driver Code 
$a = 10;
$b = 5; 
$l = 1;
$r = 3; 
if (bitsAreComplement($a, $b, $l, $r)) 
    echo "Yes"
else
    echo "No"
  
// This Code is Contributed by ajit
?>

chevron_right


Output:

Yes


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.