Check if two numbers are bit rotations of each other or not

Given two positive integers x and y, check if one integer is obtained by rotating bits of other.

Input constraint: 0 < x, y < 2^32 

Bit Rotation: A rotation (or circular shift) is an operation similar to shift except that the bits that fall off at one end are put back to the other end.

More information on bit rotation can be found here

Example 1 :

Input : a = 8, b = 1
Output : yes

Explanation :
Represntation of a = 8 : 0000 0000 0000 0000 0000 0000 0000 1000
Represntation of b = 1 : 0000 0000 0000 0000 0000 0000 0000 0001
If we rotate a by 3 units right we get b, hence answer is yes

Example 2 :

Input : a = 122, b = 2147483678
Output : yes

Explanation :
Represntation of a = 122        : 0000 0000 0000 0000 0000 0000 0111 1010
Represntation of b = 2147483678 : 1000 0000 0000 0000 0000 0000 0001 1110
If we rotate a by 2 units right we get b, hence answer is yes



Since total bits in which x or y can be represented is 32 since x, y > 0 and x, y < 2^32.
So we need to find all 32 possible rotations of x and compare it with y till x and y are not equal.
To do this we use a temporary variable x64 with 64 bits which is result of concatenation of x to x ie..
x64 has first 32 bits same as bits of x and last 32 bits are also same as bits of x64.

Then we keep on shifting x64 by 1 on right side and compare the rightmost 32 bits of x64 with y.
In this way we'll be able to get all the possible bits combination due to rotation.

Here is implementation of above algorithm.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to check if two numbers are bit rotations
// of each other.
#include <iostream>
using namespace std;
  
// function to check if  two numbers are equal 
// after bit rotation
bool isRotation(unsigned int x, unsigned int y)
{
    // x64 has concatenation of x with itself.
    unsigned long long int x64 = x | ((unsigned long long int)x << 32);
  
    while (x64 >= y)
    {
        // comapring only last 32 bits
        if (unsigned(x64) == y)
            return true;
  
        // right shift by 1 unit
        x64 >>= 1;
    }
    return false;
}
  
// driver code to test above function
int main()
{
    unsigned int x = 122;
    unsigned int y = 2147483678;
  
    if (isRotation(x, y))
        cout << "yes" << endl;
    else
        cout << "no" << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to check if two numbers are bit rotations 
// of each other. 
class GFG {
  
// function to check if two numbers are equal 
// after bit rotation 
    static boolean isRotation(long x, long y) {
        // x64 has concatenation of x with itself. 
        long x64 = x | (x << 32);
  
        while (x64 >= y) {
            // comapring only last 32 bits 
            if (x64 == y) {
                return true;
            }
  
            // right shift by 1 unit 
            x64 >>= 1;
        }
        return false;
    }
  
// driver code to test above function 
    public static void main(String[] args) {
        long x = 122;
        long y = 2147483678L;
  
        if (isRotation(x, y) == false) {
            System.out.println("Yes");
        } else {
            System.out.println("No");
        }
    }
}
  
// This code is contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to check if two 
# numbers are bit rotations of each other. 
  
# function to check if two numbers 
# are equal after bit rotation 
def isRotation(x, y) :
      
    # x64 has concatenation of x 
    # with itself. 
    x64 = x | (x << 32)
      
    while (x64 >= y) :
          
        # comapring only last 32 bits 
        if ((x64) == y) :
            return True
  
        # right shift by 1 unit 
        x64 >>= 1
  
    return False
  
# Driver Code
if __name__ == "__main__" :
  
    x = 122
    y = 2147483678
      
    if (isRotation(x, y) == False) : 
        print("yes")
    else :
        print("no"
  
# This code is contributed by Ryuga

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to check if two numbers 
// are bit rotations of each other.
using System;
  
class GFG 
{
  
// function to check if two numbers 
// are equal after bit rotation 
static bool isRotation(long x, long y) 
    // x64 has concatenation of 
    // x with itself. 
    long x64 = x | (x << 32); 
  
    while (x64 >= y) 
    
        // comapring only last 32 bits 
        if (x64 == y)
        
            return true
        
  
        // right shift by 1 unit 
        x64 >>= 1; 
    
    return false
  
// Driver Code
public static void Main() 
    long x = 122; 
    long y = 2147483678L; 
  
    if (isRotation(x, y) == false
    
        Console.Write("Yes"); 
    
    else 
    
        Console.Write("No"); 
    
  
// This code is contributed 
// by 29AjayKumar 

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to check if two
// numbers are bit rotations of
// each other.
  
// function to check if two 
// numbers are equal after 
// bit rotation
function isRotation($x, $y)
{
    // x64 has concatenation
    // of x with itself.
    $x64 = $x | ($x << 32);
  
    while ($x64 >= $y)
    {
        // comapring only last 32 bits
        if (($x64) == $y)
            return 1;
  
        // right shift by 1 unit
        $x64 >>= 1;
    }
    return -1;
}
  
// Driver Code
$x = 122;
$y = 2147483678;
  
if (isRotation($x, $y))
    echo "yes" ,"\n";
else
    echo "no" ,"\n";
  
// This code is contributed by aj_36
?>

chevron_right



Output :

yes

This article is contributed by Pratik Chhajer. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : jit_t, 29AjayKumar, AnkitRai01



Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.