Given an integer N, the task is to count numbers from the range [1, N] which are the power of prime numbers.
Examples:
Input: N = 6
Output: 3
Explanation:
Numbers from the range [1, 6] that can be expressed as powers of prime numbers are:
2 = 21
3 = 31
4 = 22
5 = 51
Input: N = 9
Output: 7
Explanation:
Numbers from the range [1, 9] that can be expressed as powers of prime numbers are:
2 = 21
3 = 31
4 = 22
5 = 51
7 = 71
8 = 23
9 = 32
Approach: The problem can be solved using Sieve of Eratosthenes.
- Initialize an array prime[] of length N+1 using Sieve of Eratosthenes, in which prime[i] = 1 means i is a prime number and prime[i] = 0 means i is not a prime number.
- Push all the prime numbers into a vector, say v.
- Initialize a variable, say ans, to store the count of the powers of primes.
- For each prime, say p in vector v, perform the following operations:
- Initialize a variable, say temp, equal to p.
- Check if the temp is less than N. If found to be true, then perform the following operations:
- Increase ans by 1.
- Update temp = temp * p, the next power of p.
- Return the final count as ans.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int countPowerOfPrimes( int N)
{
int prime[N + 1];
for ( int i = 0; i <= N; i++)
prime[i] = 1;
prime[0] = 0;
prime[1] = 0;
for ( int i = 2; i * i <= N; i++) {
if (prime[i] == 1) {
for ( int j = i * i;
j <= N; j += i) {
prime[j] = 0;
}
}
}
vector< int > v;
for ( int i = 2; i <= N; i++) {
if (prime[i] == 1) {
v.push_back(i);
}
}
int ans = 0;
for ( auto p : v) {
int temp = p;
while (temp <= N) {
ans = ans + 1;
temp = temp * p;
}
}
return ans;
}
int main()
{
int n = 9;
cout << countPowerOfPrimes(n);
return 0;
}
|
Java
class GFG{
static int countPowerOfPrimes( int N)
{
int prime[] = new int [N + 1 ];
for ( int i = 0 ; i <= N; i++)
prime[i] = 1 ;
prime[ 0 ] = 0 ;
prime[ 1 ] = 0 ;
for ( int i = 2 ; i * i <= N; i++)
{
if (prime[i] == 1 )
{
for ( int j = i * i;
j < N + 1 ;
j += i)
{
prime[j] = 0 ;
}
}
}
int v[] = new int [N + 1 ];
int j = 0 ;
for ( int i = 2 ; i < N + 1 ; i++)
{
if (prime[i] == 1 )
{
v[j] = i;
j += 1 ;
}
}
int ans = 0 ;
for ( int k = 0 ; k < j; k++)
{
int temp = v[k];
while (temp <= N)
{
ans = ans + 1 ;
temp = temp * v[k];
}
}
return ans;
}
public static void main(String[] args)
{
int n = 9 ;
System.out.println(countPowerOfPrimes(n));
}
}
|
Python3
def countPowerOfPrimes(N):
prime = [ 1 ] * (N + 1 )
prime[ 0 ] = 0
prime[ 1 ] = 0
for i in range ( 2 , N + 1 ):
if i * i > N:
break
if (prime[i] = = 1 ):
for j in range (i * i, N + 1 , i):
prime[j] = 0
v = []
for i in range ( 2 , N + 1 ):
if (prime[i] = = 1 ):
v.append(i)
ans = 0
for p in v:
temp = p
while (temp < = N):
ans = ans + 1
temp = temp * p
return ans
if __name__ = = '__main__' :
n = 9
print (countPowerOfPrimes(n))
|
C#
using System;
class GFG{
static int countPowerOfPrimes( int N)
{
int [] prime = new int [N + 1];
int j;
for ( int i = 0; i <= N; i++)
prime[i] = 1;
prime[0] = 0;
prime[1] = 0;
for ( int i = 2; i * i <= N; i++)
{
if (prime[i] == 1)
{
for (j = i * i;
j < N + 1;
j += i)
{
prime[j] = 0;
}
}
}
int [] v = new int [N + 1];
j = 0;
for ( int i = 2; i < N + 1; i++)
{
if (prime[i] == 1)
{
v[j] = i;
j += 1;
}
}
int ans = 0;
for ( int k = 0; k < j; k++)
{
int temp = v[k];
while (temp <= N)
{
ans = ans + 1;
temp = temp * v[k];
}
}
return ans;
}
public static void Main( string [] args)
{
int n = 9;
Console.Write(countPowerOfPrimes(n));
}
}
|
Javascript
<script>
function countPowerOfPrimes(N) {
var prime = Array(N + 1).fill(0);
for (i = 0; i <= N; i++)
prime[i] = 1;
prime[0] = 0;
prime[1] = 0;
for (i = 2; i * i <= N; i++) {
if (prime[i] == 1) {
for (j = i * i; j < N + 1; j += i) {
prime[j] = 0;
}
}
}
var v = Array(N + 1).fill(0);
var j = 0;
for (i = 2; i < N + 1; i++) {
if (prime[i] == 1) {
v[j] = i;
j += 1;
}
}
var ans = 0;
for (k = 0; k < j; k++) {
var temp = v[k];
while (temp <= N) {
ans = ans + 1;
temp = temp * v[k];
}
}
return ans;
}
var n = 9;
document.write(countPowerOfPrimes(n));
</script>
|
Time Complexity: O(N log (log N))
Auxiliary Space: O(N)