Open In App
Related Articles

Count numbers up to N that can be expressed as powers of Prime Numbers

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an integer N, the task is to count numbers from the range [1, N] which are the power of prime numbers.

Examples:

Input: N = 6
Output: 3
Explanation:
Numbers from the range [1, 6] that can be expressed as powers of prime numbers are:
2 = 21
3 = 31
4 = 22
5 = 51

Input: N = 9
Output: 7
Explanation:
Numbers from the range [1, 9] that can be expressed as powers of prime numbers are:
2 = 21
3 = 31
4 = 22
5 = 51
7 = 71
8 = 23
9 = 32

Approach: The problem can be solved using Sieve of Eratosthenes.

  1. Initialize an array prime[] of length N+1 using Sieve of Eratosthenes, in which prime[i] = 1 means i is a prime number and prime[i] = 0 means i is not a prime number.
  2. Push all the prime numbers into a vector, say v.
  3. Initialize a variable, say ans,  to store the count of the powers of primes.
  4. For each prime, say p in vector v, perform the following operations:
    • Initialize a variable, say temp, equal to p.
    • Check if the temp is less than N. If found to be true, then perform the following operations:
      • Increase ans by 1.
      • Update temp = temp * p, the next power of p.
  5. Return the final count as ans.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number
// of powers of prime numbers upto N
int countPowerOfPrimes(int N)
{
 
    // Sieve array
    int prime[N + 1];
 
    // Sieve of Eratosthenes
 
    // Initialize all numbers as prime
    for (int i = 0; i <= N; i++)
        prime[i] = 1;
 
    // Mark 0 and 1 as non prime
    prime[0] = 0;
    prime[1] = 0;
 
    for (int i = 2; i * i <= N; i++) {
        // If a prime number is found
        if (prime[i] == 1) {
            // Mark all multiples
            // of i as non-prime
            for (int j = i * i;
                 j <= N; j += i) {
                prime[j] = 0;
            }
        }
    }
 
    // Stores all prime
    // numbers upto N
    vector<int> v;
 
    // Push all the primes into v
    for (int i = 2; i <= N; i++) {
        if (prime[i] == 1) {
            v.push_back(i);
        }
    }
 
    // Stores the count of
    // powers of primes up to N
    int ans = 0;
 
    // Iterator over every
    // prime number up to N
    for (auto p : v) {
        // Store p in temp
        int temp = p;
 
        // Iterate until temp exceeds n
        while (temp <= N) {
            // Increment ans by 1
            ans = ans + 1;
 
            // Update temp to
            // next power of p
            temp = temp * p;
        }
    }
 
    // Return ans as the final answer
    return ans;
}
 
// Driver Code
int main()
{
    // Given Input
    int n = 9;
 
    // Function call to count
    // the number of power of
    // primes in the range [1, N]
    cout << countPowerOfPrimes(n);
 
    return 0;
}

Java




// Java program for the above approach
class GFG{
     
// Function to count the number
// of powers of prime numbers upto N
static int countPowerOfPrimes(int N)
{
     
    // Sieve array
    int prime[] = new int[N + 1];
 
    // Sieve of Eratosthenes
 
    // Initialize all numbers as prime
    for(int i = 0; i <= N; i++)
        prime[i] = 1;
 
    // Mark 0 and 1 as non prime
    prime[0] = 0;
    prime[1] = 0;
 
    for(int i = 2; i * i <= N; i++)
    {
         
        // If a prime number is found
        if (prime[i] == 1)
        {
             
            // Mark all multiples
            // of i as non-prime
            for(int j = i * i;
                    j < N + 1;
                    j += i)
            {
                prime[j] = 0;
            }
        }
    }
     
    // Stores all prime
    // numbers upto N
    int v[] = new int[N + 1];
    int j = 0;
 
    // Push all the primes into v
    for(int i = 2; i < N + 1; i++)
    {
        if (prime[i] == 1)
        {
            v[j] = i;
            j += 1;
        }
    }
     
    // Stores the count of
    // powers of primes up to N
    int ans = 0;
 
    // Iterator over every
    // prime number up to N
    for(int k = 0; k < j; k++)
    {
         
        // Store v[k] in temp
        int temp = v[k];
 
        // Iterate until temp exceeds n
        while (temp <= N)
        {
             
            // Increment ans by 1
            ans = ans + 1;
 
            // Update temp to
            // next power of v[k]
            temp = temp * v[k];
        }
    }
 
    // Return ans as the final answer
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 9;
     
    // Function call to count
    // the number of power of
    // primes in the range [1, N]
    System.out.println(countPowerOfPrimes(n));
}
}
 
// This code is contributed by AnkThon

Python3




# Python3 program for the above approach
 
# Function to count the number
# of powers of prime numbers upto N
def countPowerOfPrimes(N):
 
    # Sieve array
    prime = [1] * (N + 1)
 
    # Mark 0 and 1 as non prime
    prime[0] = 0
    prime[1] = 0
 
    for i in range(2, N + 1):
        if i * i > N:
            break
         
        # If a prime number is found
        if (prime[i] == 1):
             
            # Mark all multiples
            # of i as non-prime
            for j in range(i * i, N + 1, i):
                prime[j] = 0
 
    # Stores all prime
    # numbers upto N
    v = []
 
    # Push all the primes into v
    for i in range(2, N + 1):
        if (prime[i] == 1):
            v.append(i)
 
    # Stores the count of
    # powers of primes up to N
    ans = 0
 
    # Iterator over every
    # prime number up to N
    for p in v:
         
        # Store p in temp
        temp = p
 
        # Iterate until temp exceeds n
        while (temp <= N):
             
            # Increment ans by 1
            ans = ans + 1
 
            # Update temp to
            # next power of p
            temp = temp * p
 
    # Return ans as the final answer
    return ans
 
# Driver Code
if __name__ == '__main__':
     
    # Given Input
    n = 9
 
    # Function call to count
    # the number of power of
    # primes in the range [1, N]
    print (countPowerOfPrimes(n))
 
# This code is contributed by mohit kumar 29

C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to count the number
// of powers of prime numbers upto N
static int countPowerOfPrimes(int N)
{
     
    // Sieve array
    int[] prime = new int[N + 1];
    int j;
 
    // Sieve of Eratosthenes
 
    // Initialize all numbers as prime
    for(int i = 0; i <= N; i++)
        prime[i] = 1;
 
    // Mark 0 and 1 as non prime
    prime[0] = 0;
    prime[1] = 0;
 
    for(int i = 2; i * i <= N; i++)
    {
         
        // If a prime number is found
        if (prime[i] == 1)
        {
             
            // Mark all multiples
            // of i as non-prime
            for(j = i * i;
                j < N + 1;
                j += i)
            {
                prime[j] = 0;
            }
        }
    }
     
    // Stores all prime
    // numbers upto N
    int[] v = new int[N + 1];
    j = 0;
 
    // Push all the primes into v
    for(int i = 2; i < N + 1; i++)
    {
        if (prime[i] == 1)
        {
            v[j] = i;
            j += 1;
        }
    }
     
    // Stores the count of
    // powers of primes up to N
    int ans = 0;
 
    // Iterator over every
    // prime number up to N
    for(int k = 0; k < j; k++)
    {
         
        // Store v[k] in temp
        int temp = v[k];
 
        // Iterate until temp exceeds n
        while (temp <= N)
        {
             
            // Increment ans by 1
            ans = ans + 1;
 
            // Update temp to
            // next power of v[k]
            temp = temp * v[k];
        }
    }
 
    // Return ans as the final answer
    return ans;
}
 
// Driver Code
public static void Main(string[] args)
{
    int n = 9;
     
    // Function call to count
    // the number of power of
    // primes in the range [1, N]
    Console.Write(countPowerOfPrimes(n));
}
}
 
// This code is contributed by sanjoy_62

Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to count the number
// of powers of prime numbers upto N
    function countPowerOfPrimes(N) {
 
        // Sieve array
        var prime = Array(N + 1).fill(0);
 
        // Sieve of Eratosthenes
 
        // Initialize all numbers as prime
        for (i = 0; i <= N; i++)
            prime[i] = 1;
 
        // Mark 0 and 1 as non prime
        prime[0] = 0;
        prime[1] = 0;
 
        for (i = 2; i * i <= N; i++) {
 
            // If a prime number is found
            if (prime[i] == 1) {
 
                // Mark all multiples
                // of i as non-prime
                for (j = i * i; j < N + 1; j += i) {
                    prime[j] = 0;
                }
            }
        }
 
        // Stores all prime
        // numbers upto N
        var v = Array(N + 1).fill(0);
        var j = 0;
 
        // Push all the primes into v
        for (i = 2; i < N + 1; i++) {
            if (prime[i] == 1) {
                v[j] = i;
                j += 1;
            }
        }
 
        // Stores the count of
        // powers of primes up to N
        var ans = 0;
 
        // Iterator over every
        // prime number up to N
        for (k = 0; k < j; k++) {
 
            // Store v[k] in temp
            var temp = v[k];
 
            // Iterate until temp exceeds n
            while (temp <= N) {
 
                // Increment ans by 1
                ans = ans + 1;
 
                // Update temp to
                // next power of v[k]
                temp = temp * v[k];
            }
        }
 
        // Return ans as the final answer
        return ans;
    }
 
    // Driver Code
     
        var n = 9;
 
        // Function call to count
        // the number of power of
        // primes in the range [1, N]
        document.write(countPowerOfPrimes(n));
 
// This code contributed by aashish1995
 
</script>

Output: 

7

 

Time Complexity: O(N log (log N))
Auxiliary Space: O(N)

 


Last Updated : 26 May, 2022
Like Article
Save Article
Similar Reads
Related Tutorials