Skip to content
Related Articles

Related Articles

Check if a number is Fermat Pseudoprime
  • Difficulty Level : Easy
  • Last Updated : 07 May, 2021

Given a number N and a base number A. The task is to check whether the number is a Fermat Pseudoprime to the base. 
The number N is called as Fermat Pseudoprime to the base A, if 
 

1. A > 1 
2. N is a composite number 
3. N divides AN-1 – 1. 
 

Examples: 
 

Input : N = 645, a = 2 
Output :
645 = 3*5*43, Hence it is a composite number 
Also 645 divides 2^(644)-1 
Hence it is a Fermat Pseudoprime.
Input : N = 6, a = 2 
Output :
 

 



Approach: The approach is to check the below conditions: 
 

If all of the above conditions satisfy then N is a fermat pseudoprime to base A.
Below is the implementation of the above approach: 
 

C++




// C++ program to check if N is Fermat pseudoprime
// to the base A or not
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if the given number is composite
bool checkcomposite(int n)
{
    // Check if there is any divisor of n less than sqrt(n)
    for (int i = 2; i <= sqrt(n); i++) {
        if (n % i == 0)
            return 1;
    }
    return 0;
}
 
// Effectively calculate (x^y) modulo mod
int power(int x, int y, int mod)
{
 
    // Initialize result
    int res = 1;
 
    while (y) {
 
        // If power is odd, then update the answer
        if (y & 1)
            res = (res * x) % mod;
 
        // Square the number and reduce
        // the power to its half
        y = y >> 1;
        x = (x * x) % mod;
    }
 
    // Return the result
    return res;
}
 
// Function to check for Fermat Pseudoprime
bool Check(int n, int a)
{
 
    // If it is composite and satisfy Fermat criterion
    if (a>1 && checkcomposite(n) && power(a, n - 1, n) == 1)
        return 1;
 
    // Else return 0
    return 0;
}
 
// Driver code
int main()
{
 
    int N = 645;
    int a = 2;
     
   //  Function call
    cout << Check(N, a);
 
    return 0;
}

Java




// Java program to check if N is Fermat pseudoprime
// to the base A or not
class GFG
{
 
    // Function to check if
    // the given number is composite
    static boolean checkcomposite(int n)
    {
        // Check if there is any divisor of n
        // less than sqrt(n)
        for (int i = 2; i <= Math.sqrt(n); i++)
        {
            if (n % i == 0)
            {
                return true;
            }
        }
        return false;
    }
 
    // Effectively calculate (x^y) modulo mod
    static int power(int x, int y, int mod)
    {
 
        // Initialize result
        int res = 1;
 
        while (y != 0)
        {
 
            // If power is odd,
            // then update the answer
            if ((y & 1) == 1)
            {
                res = (res * x) % mod;
            }
 
            // Square the number and reduce
            // the power to its half
            y = y >> 1;
            x = (x * x) % mod;
        }
 
        // Return the result
        return res;
    }
 
    // Function to check for Fermat Pseudoprime
    static int Check(int n, int a)
    {
 
        // If it is composite and
        // satisfy Fermat criterion
        if (a > 1 && checkcomposite(n)
                && power(a, n - 1, n) == 1)
        {
            return 1;
        }
 
        // Else return 0
        return 0;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int N = 645;
        int a = 2;
 
        // Function call
        System.out.println(Check(N, a));
    }
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 program to check if N is Fermat pseudoprime
# to the base A or not
 
from math import sqrt
 
# Function to check if the given number is composite
def checkcomposite(n):
     
    # Check if there is any divisor of n less than sqrt(n)
    for i in range(2,int(sqrt(n))+1,1):
        if (n % i == 0):
            return 1
    return 0
 
# Effectively calculate (x^y) modulo mod
def power(x, y, mod):
    # Initialize result
    res = 1
 
    while (y):
        # If power is odd, then update the answer
        if (y & 1):
            res = (res * x) % mod
 
        # Square the number and reduce
        # the power to its half
        y = y >> 1
        x = (x * x) % mod
 
    # Return the result
    return res
 
# Function to check for Fermat Pseudoprime
def Check(n,a):
    # If it is composite and satisfy Fermat criterion
    if (a>1 and checkcomposite(n) and power(a, n - 1, n) == 1):
        return 1
 
    # Else return 0
    return 0
 
# Driver code
if __name__ == '__main__':
    N = 645
    a = 2
 
    # Function call
    print(Check(N, a))
 
# This code is contributed by
# Surendra_Gangwar

C#




// C# program to check if N is Fermat pseudoprime
// to the base A or not
using System;
 
class GFG
{
     
    // Function to check if
    // the given number is composite
    static bool checkcomposite(int n)
    {
        // Check if there is any divisor of n
        // less than sqrt(n)
        for (int i = 2; i <= Math.Sqrt(n); i++)
        {
            if (n % i == 0)
                return true;
        }
        return false;
    }
     
    // Effectively calculate (x^y) modulo mod
    static int power(int x, int y, int mod)
    {
     
        // Initialize result
        int res = 1;
     
        while (y != 0)
        {
     
            // If power is odd, then update the answer
            if ((y & 1) == 1)
                res = (res * x) % mod;
     
            // Square the number and reduce
            // the power to its half
            y = y >> 1;
            x = (x * x) % mod;
        }
     
        // Return the result
        return res;
    }
     
    // Function to check for Fermat Pseudoprime
    static int Check(int n, int a)
    {
     
        // If it is composite and satisfy Fermat criterion
        if (a > 1 && checkcomposite(n) &&
                     power(a, n - 1, n) == 1)
            return 1;
     
        // Else return 0
        return 0;
    }
     
    // Driver code
    static public void Main ()
    {
        int N = 645;
        int a = 2;
     
        // Function call
        Console.WriteLine(Check(N, a));
    }
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
 
// Javascript program to check if
// N is Fermat pseudoprime
// to the base A or not
 
// Function to check if the given
// number is composite
function checkcomposite(n)
{
    // Check if there is any divisor
    // of n less than sqrt(n)
    for (let i = 2; i <= Math.sqrt(n); i++)
    {
        if (n % i == 0)
            return 1;
    }
    return 0;
}
 
// Effectively calculate (x^y) modulo mod
function power(x, y, mod)
{
 
    // Initialize result
    let res = 1;
 
    while (y) {
 
        // If power is odd, then update the answer
        if (y & 1)
            res = (res * x) % mod;
 
        // Square the number and reduce
        // the power to its half
        y = y >> 1;
        x = (x * x) % mod;
    }
 
    // Return the result
    return res;
}
 
// Function to check for Fermat Pseudoprime
function Check(n, a)
{
 
    // If it is composite and satisfy
    // Fermat criterion
    if (a>1 && checkcomposite(n) &&
    power(a, n - 1, n) == 1)
        return 1;
 
    // Else return 0
    return 0;
}
 
// Driver code
 
    let N = 645;
    let a = 2;
     
       //  Function call
    document.write(Check(N, a));
 
</script>
Output: 
1

 

Time Complexity : O(sqrt(N))
 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :