Fermat’s Last Theorem

According to Fermat’s Last Theorem, no three positive integers a, b, c satisfy the equation, a^n + b^n = c^n for any integer value of n greater than 2. For n = 1 and n = 2, the equation have infinitely many solutions.

Some solutions for n = 1 are,
 2 + 3 = 5
 7 + 13 = 20
 5 + 6 = 11
 10 + 9 = 19

Some solutions for n = 2 are,
   5^2 + 12^2 = 13^2     3^2 + 4^2 = 5^2    8^2 + 15^2 = 17^2    9^2 + 40^2 = 41^2 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to verify fermat's last theorem
// for a given range and n.
#include <bits/stdc++.h>
using namespace std;
  
void testSomeNumbers(int limit, int n)
{
   if (n < 3)
     return;
  
   for (int a=1; a<=limit; a++)
     for (int b=a; b<=limit; b++)
     {
         // Check if there exists a triplet
         // such that a^n + b^n = c^n
         int pow_sum = pow(a, n) + pow(b, n);
         double c = pow(pow_sum, 1.0/n);
         int c_pow = pow((int)c, n);
         if (c_pow == pow_sum)
         {
             cout << "Count example found";
             return;
         }
     }
  
     cout << "No counter example within given"
            " range and data";
}
  
// driver code
int main()
{
    testSomeNumbers(10, 3);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to verify fermat's last theorem
// for a given range and n.
import java.io.*;
  
class GFG 
{
    static void testSomeNumbers(int limit, int n)
    {
        if (n < 3)
            return;
          
        for (int a = 1; a <= limit; a++)
            for (int b = a; b <= limit; b++)
            {
                // Check if there exists a triplet
                // such that a^n + b^n = c^n
                int pow_sum = (int)(Math.pow(a, n) 
                               + Math.pow(b, n));
                double c = Math.pow(pow_sum, 1.0 / n);
                int c_pow = (int)Math.pow((int)c, n);
                if (c_pow == pow_sum)
                {
                    System.out.println("Count example found");
                    return;
                }
            }
          
            System.out.println("No counter example within given"+
                               " range and data");
    }
      
    // Driver code
    public static void main (String[] args) 
    {
        testSomeNumbers(12, 5);
      
    }
}
  
// This code is contributed by vt_m.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to verify fermat's last 
# theorem for a given range and n.
  
def testSomeNumbers(limit, n) :
  
    if (n < 3):
        return
      
    for a in range(1, limit + 1):
        for b in range(a, limit + 1):
          
            # Check if there exists a triplet
            # such that a^n + b^n = c^n
            pow_sum = pow(a, n) + pow(b, n)
            c = pow(pow_sum, 1.0 / n)
            c_pow = pow(int(c), n)
              
            if (c_pow == pow_sum):
                print("Count example found")
                return
    print("No counter example within given range and data")
  
# Driver code
testSomeNumbers(10, 3)
  
# This code is contributed by Smitha Dinesh Semwal.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to verify fermat's last theorem
// for a given range and n.
using System;
  
class GFG {
      
    static void testSomeNumbers(int limit, int n)
    {
        if (n < 3)
            return;
          
        for (int a = 1; a <= limit; a++)
            for (int b = a; b <= limit; b++)
            {
                  
                // Check if there exists a triplet
                // such that a^n + b^n = c^n
                int pow_sum = (int)(Math.Pow(a, n) 
                                + Math.Pow(b, n));
                double c = Math.Pow(pow_sum, 1.0 / n);
                int c_pow = (int)Math.Pow((int)c, n);
                  
                if (c_pow == pow_sum)
                {
                    Console.WriteLine("Count example found");
                    return;
                }
            }
          
            Console.WriteLine("No counter example within" 
                                + " given range and data");
    }
      
    // Driver code
    public static void Main () 
    {
        testSomeNumbers(12, 3);
      
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to verify fermat's
// last theorem for a given range 
//and n.
  
function testSomeNumbers($limit, $n)
{
    if ($n < 3)
      
    for($a = 1; $a <= $limit; $a++)
        for($b = $a; $b <= $limit; $b++)
    {
          
        // Check if there exists a triplet
        // such that a^n + b^n = c^n
        $pow_sum = pow($a, $n) + pow($b, $n);
          
        $c = pow($pow_sum, 1.0 / $n);
        $c_pow = pow($c, $n);
        if ($c_pow != $pow_sum)
        {
            echo "Count example found";
            return;
        }
    }
  
    echo "No counter example within ".
              "given range and data";
}
  
    // Driver Code
    testSomeNumbers(10, 3);
  
// This code is contributed by m_kit
?>

chevron_right


Output:

No counter example within given range and data


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : jit_t