Skip to content
Related Articles

Related Articles

Improve Article

Fermat’s Last Theorem

  • Difficulty Level : Basic
  • Last Updated : 06 Apr, 2021

According to Fermat’s Last Theorem, no three positive integers a, b, c satisfy the equation, a^n + b^n = c^n  for any integer value of n greater than 2. For n = 1 and n = 2, the equation have infinitely many solutions.
 

Some solutions for n = 1 are,
 2 + 3 = 5
 7 + 13 = 20
 5 + 6 = 11
 10 + 9 = 19

Some solutions for n = 2 are,
5^2 + 12^2 = 13^2     3^2 + 4^2 = 5^2    8^2 + 15^2 = 17^2    9^2 + 40^2 = 41^2

 

C++




// C++ program to verify fermat's last theorem
// for a given range and n.
#include <bits/stdc++.h>
using namespace std;
 
void testSomeNumbers(int limit, int n)
{
   if (n < 3)
     return;
 
   for (int a=1; a<=limit; a++)
     for (int b=a; b<=limit; b++)
     {
         // Check if there exists a triplet
         // such that a^n + b^n = c^n
         int pow_sum = pow(a, n) + pow(b, n);
         double c = pow(pow_sum, 1.0/n);
         int c_pow = pow((int)c, n);
         if (c_pow == pow_sum)
         {
             cout << "Count example found";
             return;
         }
     }
 
     cout << "No counter example within given"
            " range and data";
}
 
// driver code
int main()
{
    testSomeNumbers(10, 3);
    return 0;
}

Java




// Java program to verify fermat's last theorem
// for a given range and n.
import java.io.*;
 
class GFG
{
    static void testSomeNumbers(int limit, int n)
    {
        if (n < 3)
            return;
         
        for (int a = 1; a <= limit; a++)
            for (int b = a; b <= limit; b++)
            {
                // Check if there exists a triplet
                // such that a^n + b^n = c^n
                int pow_sum = (int)(Math.pow(a, n)
                               + Math.pow(b, n));
                double c = Math.pow(pow_sum, 1.0 / n);
                int c_pow = (int)Math.pow((int)c, n);
                if (c_pow == pow_sum)
                {
                    System.out.println("Count example found");
                    return;
                }
            }
         
            System.out.println("No counter example within given"+
                               " range and data");
    }
     
    // Driver code
    public static void main (String[] args)
    {
        testSomeNumbers(12, 5);
     
    }
}
 
// This code is contributed by vt_m.

Python3




# Python3 program to verify fermat's last
# theorem for a given range and n.
 
def testSomeNumbers(limit, n) :
 
    if (n < 3):
        return
     
    for a in range(1, limit + 1):
        for b in range(a, limit + 1):
         
            # Check if there exists a triplet
            # such that a^n + b^n = c^n
            pow_sum = pow(a, n) + pow(b, n)
            c = pow(pow_sum, 1.0 / n)
            c_pow = pow(int(c), n)
             
            if (c_pow == pow_sum):
                print("Count example found")
                return
    print("No counter example within given range and data")
 
# Driver code
testSomeNumbers(10, 3)
 
# This code is contributed by Smitha Dinesh Semwal.

C#




// C# program to verify fermat's last theorem
// for a given range and n.
using System;
 
class GFG {
     
    static void testSomeNumbers(int limit, int n)
    {
        if (n < 3)
            return;
         
        for (int a = 1; a <= limit; a++)
            for (int b = a; b <= limit; b++)
            {
                 
                // Check if there exists a triplet
                // such that a^n + b^n = c^n
                int pow_sum = (int)(Math.Pow(a, n)
                                + Math.Pow(b, n));
                double c = Math.Pow(pow_sum, 1.0 / n);
                int c_pow = (int)Math.Pow((int)c, n);
                 
                if (c_pow == pow_sum)
                {
                    Console.WriteLine("Count example found");
                    return;
                }
            }
         
            Console.WriteLine("No counter example within"
                                + " given range and data");
    }
     
    // Driver code
    public static void Main ()
    {
        testSomeNumbers(12, 3);
     
    }
}
 
// This code is contributed by vt_m.

PHP




<?php
// PHP program to verify fermat's
// last theorem for a given range
//and n.
 
function testSomeNumbers($limit, $n)
{
    if ($n < 3)
     
    for($a = 1; $a <= $limit; $a++)
        for($b = $a; $b <= $limit; $b++)
    {
         
        // Check if there exists a triplet
        // such that a^n + b^n = c^n
        $pow_sum = pow($a, $n) + pow($b, $n);
         
        $c = pow($pow_sum, 1.0 / $n);
        $c_pow = pow($c, $n);
        if ($c_pow != $pow_sum)
        {
            echo "Count example found";
            return;
        }
    }
 
    echo "No counter example within ".
              "given range and data";
}
 
    // Driver Code
    testSomeNumbers(10, 3);
 
// This code is contributed by m_kit
?>

Javascript




<script>
 
// JavaScript program to verify fermat's last theorem
// for a given range and n.
 
    function testSomeNumbers(limit, n)
    {
        if (n < 3)
            return;
           
        for (let a = 1; a <= limit; a++)
            for (let b = a; b <= limit; b++)
            {
                // Check if there exists a triplet
                // such that a^n + b^n = c^n
                let pow_sum = (Math.pow(a, n)
                               + Math.pow(b, n));
                let c = Math.pow(pow_sum, 1.0 / n);
                let c_pow = Math.pow(Math.round(c), n);
                if (c_pow == pow_sum)
                {
                    document.write("Count example found");
                    return;
                }
            }
           
            document.write("No counter example within given"+
                               " range and data");
    }
  
 
// Driver Code
 
        testSomeNumbers(12, 5);
           
</script>
Output: 
No counter example within given range and data

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :