NaN stands for Not A Number and is one of the common ways to represent the missing value in the data. It is a special floating-point value and cannot be converted to any other type than float. NaN value is one of the major problems in Data Analysis. It is very essential to deal with NaN in order to get the desired results.
The ways to check for NaN in Pandas DataFrame are as follows:
- Check for NaN under a single DataFrame column:
- Count the NaN under a single DataFrame column:
- Check for NaN under the whole DataFrame:
- Count the NaN under the whole DataFrame:
Method 1: Using isnull().values.any() method
Example:
Python3
# importing libraries import pandas as pd import numpy as np num = { 'Integers' : [ 10 , 15 , 30 , 40 , 55 , np.nan, 75 , np.nan, 90 , 150 , np.nan]} # Create the dataframe df = pd.DataFrame(num, columns = [ 'Integers' ]) # Applying the method check_nan = df[ 'Integers' ].isnull().values. any () # printing the result print (check_nan) |
Output:
It is also possible to to get the exact positions where NaN values are present. We can do so by removing .values.any() from isnull().values.any() .
Python3
check_nan = df[ 'Integers' ].isnull() |
Output:
Method 2: Using isnull().sum() Method
Example:
Python3
# importing libraries import pandas as pd import numpy as np num = { 'Integers' : [ 10 , 15 , 30 , 40 , 55 , np.nan, 75 , np.nan, 90 , 150 , np.nan]} # Create the dataframe df = pd.DataFrame(num, columns = [ 'Integers' ]) # applying the method count_nan = df[ 'Integers' ].isnull(). sum () # printing the number of values present # in the column print ( 'Number of NaN values present: ' + str (count_nan)) |
Output:
Method 3: Using isnull().values.any() Method
Example:
Python3
# importing libraries import pandas as pd import numpy as np nums = { 'Integers_1' : [ 10 , 15 , 30 , 40 , 55 , np.nan, 75 , np.nan, 90 , 150 , np.nan], 'Integers_2' : [np.nan, 21 , 22 , 23 , np.nan, 24 , 25 , np.nan, 26 , np.nan, np.nan]} # Create the dataframe df = pd.DataFrame(nums, columns = [ 'Integers_1' , 'Integers_2' ]) # applying the method nan_in_df = df.isnull().values. any () # Print the dataframe print (nan_in_df) |
Output:
To get the exact positions where NaN values are present, we can do so by removing .values.any() from isnull().values.any() .
Method 4: Using isnull().sum().sum() Method
Example:
Python3
# importing libraries import pandas as pd import numpy as np nums = { 'Integers_1' : [ 10 , 15 , 30 , 40 , 55 , np.nan, 75 , np.nan, 90 , 150 , np.nan], 'Integers_2' : [np.nan, 21 , 22 , 23 , np.nan, 24 , 25 , np.nan, 26 , np.nan, np.nan]} # Create the dataframe df = pd.DataFrame(nums, columns = [ 'Integers_1' , 'Integers_2' ]) # applying the method nan_in_df = df.isnull(). sum (). sum () # printing the number of values present in # the whole dataframe print ( 'Number of NaN values present: ' + str (nan_in_df)) |
Output:
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.