# Calculate the Euclidean distance using NumPy

• Difficulty Level : Basic
• Last Updated : 05 Jul, 2021

In simple terms, Euclidean distance is the shortest between the 2 points irrespective of the dimensions. In this article to find the Euclidean distance, we will use the NumPy library. This library used for manipulating multidimensional array in a very efficient way. Let’s discuss a few ways to find Euclidean distance by NumPy library.

Method #1: Using linalg.norm()

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

## Python3

 `# Python code to find Euclidean distance``# using linalg.norm()` `import` `numpy as np` `# initializing points in``# numpy arrays``point1 ``=` `np.array((``1``, ``2``, ``3``))``point2 ``=` `np.array((``1``, ``1``, ``1``))` `# calculating Euclidean distance``# using linalg.norm()``dist ``=` `np.linalg.norm(point1 ``-` `point2)` `# printing Euclidean distance``print``(dist)`

Output:

`2.23606797749979`

Method #2: Using dot()

## Python3

 `# Python code to find Euclidean distance``# using dot()` `import` `numpy as np` `# initializing points in``# numpy arrays``point1 ``=` `np.array((``1``, ``2``, ``3``))``point2 ``=` `np.array((``1``, ``1``, ``1``))` `# subtracting vector``temp ``=` `point1 ``-` `point2` `# doing dot product``# for finding``# sum of the squares``sum_sq ``=` `np.dot(temp.T, temp)` `# Doing squareroot and``# printing Euclidean distance``print``(np.sqrt(sum_sq))`

Output:

`2.23606797749979`

Method #3: Using square() and sum()

## Python3

 `# Python code to find Euclidean distance``# using sum() and square()` `import` `numpy as np` `# initializing points in``# numpy arrays``point1 ``=` `np.array((``1``, ``2``, ``3``))``point2 ``=` `np.array((``1``, ``1``, ``1``))` `# finding sum of squares``sum_sq ``=` `np.``sum``(np.square(point1 ``-` `point2))` `# Doing squareroot and``# printing Euclidean distance``print``(np.sqrt(sum_sq))`

Output:

`2.23606797749979`

My Personal Notes arrow_drop_up