Related Articles

Related Articles

C Program for Iterative Quick Sort
  • Last Updated : 04 Dec, 2018
filter_none

edit
close

play_arrow

link
brightness_4
code

// An iterative implementation of quick sort
#include <stdio.h>
  
// A utility function to swap two elements
void swap(int* a, int* b)
{
    int t = *a;
    *a = *b;
    *b = t;
}
  
/* This function is same in both iterative and recursive*/
int partition(int arr[], int l, int h)
{
    int x = arr[h];
    int i = (l - 1);
  
    for (int j = l; j <= h - 1; j++) {
        if (arr[j] <= x) {
            i++;
            swap(&arr[i], &arr[j]);
        }
    }
    swap(&arr[i + 1], &arr[h]);
    return (i + 1);
}
  
/* A[] --> Array to be sorted, 
   l  --> Starting index, 
   h  --> Ending index */
void quickSortIterative(int arr[], int l, int h)
{
    // Create an auxiliary stack
    int stack[h - l + 1];
  
    // initialize top of stack
    int top = -1;
  
    // push initial values of l and h to stack
    stack[++top] = l;
    stack[++top] = h;
  
    // Keep popping from stack while is not empty
    while (top >= 0) {
        // Pop h and l
        h = stack[top--];
        l = stack[top--];
  
        // Set pivot element at its correct position
        // in sorted array
        int p = partition(arr, l, h);
  
        // If there are elements on left side of pivot,
        // then push left side to stack
        if (p - 1 > l) {
            stack[++top] = l;
            stack[++top] = p - 1;
        }
  
        // If there are elements on right side of pivot,
        // then push right side to stack
        if (p + 1 < h) {
            stack[++top] = p + 1;
            stack[++top] = h;
        }
    }
}
  
// A utility function to print contents of arr
void printArr(int arr[], int n)
{
    int i;
    for (i = 0; i < n; ++i)
        printf("%d ", arr[i]);
}
  
// Driver program to test above functions
int main()
{
    int arr[] = { 4, 3, 5, 2, 1, 3, 2, 3 };
    int n = sizeof(arr) / sizeof(*arr);
    quickSortIterative(arr, 0, n - 1);
    printArr(arr, n);
    return 0;
}

chevron_right


Output:

1 2 2 3 3 3 4 5

The above mentioned optimizations for recursive quick sort can also be applied to iterative version.

1) Partition process is same in both recursive and iterative. The same techniques to choose optimal pivot can also be applied to iterative version.

2) To reduce the stack size, first push the indexes of smaller half.

3) Use insertion sort when the size reduces below a experimentally calculated threshold.

Please refer complete article on Iterative Quick Sort for more details!

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :