# Build original array from the given sub-sequences

Given an integer **N** and valid subsequences of an array of integers where every element is distinct and from the range **[0, N – 1]**, the task is to find the original array.

**Examples:**

Input:N = 6, v[] = {

{1, 2, 3},

{1, 2},

{3, 4},

{5, 2},

{0, 5, 4}}

Output:0 1 5 2 3 4

Input:N = 10, v[] = {

{9, 1, 2, 8, 3},

{6, 1, 2},

{9, 6, 3, 4},

{5, 2, 7},

{0, 9, 5, 4}}

Output:0 9 6 5 1 2 8 7 3 4

**Approach:** Build a graph from given subsequences. Select each sub-sequence one by one and add an edge between two adjacent elements in the sub-sequence. After building the graph, perform topological sorting on the graph.

Refer topological sorting for understanding topological sort. This topological ordering is the required array.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to add edge to graph ` `void` `addEdge(vector<` `int` `> adj[], ` `int` `u, ` `int` `v) ` `{ ` ` ` `adj[u].push_back(v); ` `} ` ` ` `// Function to calculate indegrees of all the vertices ` `void` `getindeg(vector<` `int` `> adj[], ` `int` `V, vector<` `int` `>& indeg) ` `{ ` ` ` `// If there is an edge from i to x ` ` ` `// then increment indegree of x ` ` ` `for` `(` `int` `i = 0; i < V; i++) { ` ` ` `for` `(` `auto` `x : adj[i]) { ` ` ` `indeg[x]++; ` ` ` `} ` ` ` `} ` `} ` ` ` `// Function to perform topological sort ` `vector<` `int` `> topo(vector<` `int` `> adj[], ` `int` `V, vector<` `int` `>& indeg) ` `{ ` ` ` `queue<` `int` `> q; ` ` ` ` ` `// Push every node to the queue ` ` ` `// which has no incoming edge ` ` ` `for` `(` `int` `i = 0; i < V; i++) { ` ` ` `if` `(indeg[i] == 0) ` ` ` `q.push(i); ` ` ` `} ` ` ` `vector<` `int` `> res; ` ` ` `while` `(!q.empty()) { ` ` ` `int` `u = q.front(); ` ` ` `q.pop(); ` ` ` `res.push_back(u); ` ` ` ` ` `// Since edge u is removed, update the indegrees ` ` ` `// of all the nodes which had an incoming edge from u ` ` ` `for` `(` `auto` `x : adj[u]) { ` ` ` `indeg[x]--; ` ` ` `if` `(indeg[x] == 0) ` ` ` `q.push(x); ` ` ` `} ` ` ` `} ` ` ` `return` `res; ` `} ` ` ` `// Function to generate the array ` `// from the given sub-sequences ` `vector<` `int` `> makearray(vector<vector<` `int` `> > v, ` `int` `V) ` `{ ` ` ` ` ` `// Create the graph from the input sub-sequences ` ` ` `vector<` `int` `> adj[V]; ` ` ` `for` `(` `int` `i = 0; i < v.size(); i++) { ` ` ` `for` `(` `int` `j = 0; j < v[i].size() - 1; j++) { ` ` ` ` ` `// Add edge between every two consecutive ` ` ` `// elements of the given sub-sequences ` ` ` `addEdge(adj, v[i][j], v[i][j + 1]); ` ` ` `} ` ` ` `} ` ` ` ` ` `// Get the indegrees for all the vertices ` ` ` `vector<` `int` `> indeg(V, 0); ` ` ` `getindeg(adj, V, indeg); ` ` ` ` ` `// Get the topological order of the created graph ` ` ` `vector<` `int` `> res = topo(adj, V, indeg); ` ` ` `return` `res; ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `// Size of the required array ` ` ` `int` `n = 10; ` ` ` ` ` `// Given sub-sequences of the array ` ` ` `vector<vector<` `int` `> > subseqs{ { 9, 1, 2, 8, 3 }, ` ` ` `{ 6, 1, 2 }, ` ` ` `{ 9, 6, 3, 4 }, ` ` ` `{ 5, 2, 7 }, ` ` ` `{ 0, 9, 5, 4 } }; ` ` ` ` ` `// Get the resultant array as vector ` ` ` `vector<` `int` `> res = makearray(subseqs, n); ` ` ` ` ` `// Printing the array ` ` ` `for` `(` `auto` `x : res) { ` ` ` `cout << x << ` `" "` `; ` ` ` `} ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Python3

`# Python3 implementation of the approach ` `from` `collections ` `import` `deque ` `adj` `=` `[[] ` `for` `i ` `in` `range` `(` `100` `)] ` ` ` `# Function to add edge to graph ` `def` `addEdge(u, v): ` ` ` `adj[u].append(v) ` ` ` `# Function to calculate indegrees of all the vertices ` `def` `getindeg(V,indeg): ` ` ` ` ` `# If there is an edge from i to x ` ` ` `# then increment indegree of x ` ` ` `for` `i ` `in` `range` `(V): ` ` ` `for` `x ` `in` `adj[i]: ` ` ` `indeg[x] ` `+` `=` `1` ` ` ` ` `# Function to perform topological sort ` `def` `topo(V,indeg): ` ` ` `q ` `=` `deque() ` ` ` ` ` `# Push every node to the queue ` ` ` `# which has no incoming edge ` ` ` `for` `i ` `in` `range` `(V): ` ` ` `if` `(indeg[i] ` `=` `=` `0` `): ` ` ` `q.appendleft(i) ` ` ` `res` `=` `[] ` ` ` `while` `(` `len` `(q) > ` `0` `): ` ` ` `u ` `=` `q.popleft() ` ` ` `res.append(u) ` ` ` ` ` `# Since edge u is removed, update the indegrees ` ` ` `# of all the nodes which had an incoming edge from u ` ` ` `for` `x ` `in` `adj[u]: ` ` ` `indeg[x]` `-` `=` `1` ` ` `if` `(indeg[x] ` `=` `=` `0` `): ` ` ` `q.appendleft(x) ` ` ` ` ` `return` `res ` ` ` ` ` `# Function to generate the array ` `# from the given sub-sequences ` `def` `makearray(v, V): ` ` ` ` ` `# Create the graph from the input sub-sequences ` ` ` `for` `i ` `in` `range` `(` `len` `(v)): ` ` ` `for` `j ` `in` `range` `(` `len` `(v[i])` `-` `1` `): ` ` ` ` ` `# Add edge between every two consecutive ` ` ` `# elements of the given sub-sequences ` ` ` `addEdge(v[i][j], v[i][j ` `+` `1` `]) ` ` ` ` ` ` ` `# Get the indegrees for all the vertices ` ` ` `indeg` `=` `[` `0` `for` `i ` `in` `range` `(V)] ` ` ` `getindeg(V, indeg) ` ` ` ` ` `# Get the topological order of the created graph ` ` ` `res ` `=` `topo(V, indeg) ` ` ` `return` `res ` ` ` `# Driver code ` ` ` `# Size of the required array ` `n ` `=` `10` ` ` `# Given sub-sequences of the array ` `subseqs` `=` `[ [ ` `9` `, ` `1` `, ` `2` `, ` `8` `, ` `3` `], ` ` ` `[ ` `6` `, ` `1` `, ` `2` `], ` ` ` `[ ` `9` `, ` `6` `, ` `3` `, ` `4` `], ` ` ` `[ ` `5` `, ` `2` `, ` `7` `], ` ` ` `[ ` `0` `, ` `9` `, ` `5` `, ` `4` `] ] ` ` ` `# Get the resultant array as vector ` `res ` `=` `makearray(subseqs, n) ` ` ` `# Printing the array ` `for` `x ` `in` `res: ` ` ` `print` `(x,end` `=` `" "` `) ` ` ` `# This code is contributed by mohit kumar 29 ` |

*chevron_right*

*filter_none*

**Output:**

0 9 6 5 1 2 8 7 3 4

## Recommended Posts:

- Generate original array from difference between every two consecutive elements
- Print n smallest elements from given array in their original order
- Find k maximum elements of array in original order
- Minimum time to return array to its original state after given modifications
- Tag Sort (To get both sorted and original)
- Find original numbers from gcd() every pair
- Sum of width (max and min diff) of all Subsequences
- Product of all Subsequences of size K except the minimum and maximum Elements
- Count minimum number of subsets (or subsequences) with consecutive numbers
- Check whether an array can be fit into another array rearranging the elements in the array
- Minimum number greater than the maximum of array which cannot be formed using the numbers in the array
- Maximize the size of array by deleting exactly k sub-arrays to make array prime
- Given a sorted array and a number x, find the pair in array whose sum is closest to x
- Maximize the median of the given array after adding K elements to the same array
- Why is it faster to process sorted array than an unsorted array ?

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.