# beta(), betaf() and betal() functions in C++ STL

The beta(), betaf() and betal() are built-in functions in C++ STL that are used to compute the beta functionof two positive real values. The function takes two variables x and y as input and returns the beta function of x and y. Beta function (Also known as Euler integral of first kind) of x and y can be defined as: Syntax

double beta(double x, double y)
or
long double betal(long double x, long double y)
or
float betaf(float x, float y)

Parameters: The function accepts two mandatory parameters x and y which specifies the values of a floating-point or integral type. The parameters can be of double, double or float, float or long double, long double data-type.

Return Value: The function returns the value of beta function of x and y. The return type depends on the parameters passed. It is same as that of the parameter.

Note: The function runs in and above C++ 17(7.1).

Below program illustrates the beta(), betaf() and betal() functions:

 // C++ program to illustrate the three functions  // Being a special function, beta is only guaranteed  // to be in cmath if the user defines  //  __STDCPP_WANT_MATH_SPEC_FUNCS__ before including  // any standard library headers.  #define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1  #include  using namespace std;     int main()  {      // Computes the beta function of 5 and 4 and print it      // If provided arguments are not of type double      // they are implicitly type-casted to the higher type.         // first example of beta()      cout << beta(5, 4) << "\n";         // second example of betaf()      cout << betaf(10.0, 4.0) << "\n";         // third example of betal()      cout << betal(10.0, 6.7) << "\n";      return 0;  }

Output:

0.00357143
0.00034965
1.65804e-005


Application of Beta function: It is used to compute Binomial Coefficients.The binomial coefficient in terms of beta function can be expressed as: The above relation can be used to compute the binomial coeeficient. An illustration has been shown below:

 // C++ program to print the pascal triangle  // Being a special function, beta is only guaranteed  // to be in cmath if the user defines  //  __STDCPP_WANT_MATH_SPEC_FUNCS__ before including  // any standard library headers.  #define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1  #include  #include  using namespace std;     // Function to return the value of binomial Coefficient  double binomialCoefficient(int n, int k)  {      // Calculate the value of nCr using above formula.      double ans = 1 / ((n + 1) * beta(n - k + 1, k + 1));      return ans;  }  // Driver Code  int main()  {      // Print the binomial Coefficient nCr where n=5 and r=2      cout << binomialCoefficient(5, 2) << "\n";         return 0;  }

Output:

10


Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.