Binary Search functions in C++ STL (binary_search, lower_bound and upper_bound)

Binary search is an important component in competitive programming or any algorithmic competition, having knowledge of shorthand functions reduces the time to code them. This searching only works when container is sorted. Related functions are discussed below.

1.binary_search(start_ptr, end_ptr, num) : This function returns boolean true if the element is present in the container, else returns false.

 // C++ code to demonstrate the working of binary_search()    #include  using namespace std;    int main() {     // initializing vector of integers     vector arr = {10, 15, 20, 25, 30, 35};            // using binary_search to check if 15 exists     if (binary_search(arr.begin(), arr.end(), 15))        cout << "15 exists in vector";     else         cout << "15 does not exist";             cout << endl;            // using binary_search to check if 23 exists     if (binary_search(arr.begin(), arr.end(), 23))          cout << "23 exists in vector";     else           cout << "23 does not exist";             cout << endl;     }

Output:

15 exists in vector
23 does not exist

2. lower_bound(start_ptr, end_ptr, num) : Returns pointer to “position of num” if container contains 1 occurrence of num. Returns pointer to “first position of num” if container contains multiple occurrence of num. Returns pointer to “position of next higher number than num” if container does not contain occurrence of num. Subtracting the pointer to 1st position i.e “vect.begin()” returns the actual index.

 // C++ code to demonstrate the working of lower_bound() #include  using namespace std;    int main() {     // initializing vector of integers     // for single occurrence     vector arr1 = {10, 15, 20, 25, 30, 35};            // initializing vector of integers     // for multiple occurrences     vector arr2 = {10, 15, 20, 20, 25, 30, 35};            // initializing vector of integers     // for no occurrence     vector arr3 = {10, 15, 25, 30, 35};                // using lower_bound() to check if 20 exists     // single occurrence     // prints 2     cout << "The position of 20 using lower_bound "             " (in single occurrence case) : ";     cout << lower_bound(arr1.begin(), arr1.end(), 20)              - arr1.begin();             cout << endl;            // using lower_bound() to check if 20 exists     // multiple occurrence     // prints 2     cout << "The position of 20 using lower_bound "              "(in multiple occurrence case) : ";     cout << lower_bound(arr2.begin(), arr2.end(), 20)              - arr2.begin();             cout << endl;             // using lower_bound() to check if 20 exists     // no occurrence     // prints 2 ( index of next higher)     cout << "The position of 20 using lower_bound "              "(in no occurrence case) : ";     cout << lower_bound(arr3.begin(), arr3.end(), 20)              - arr3.begin();             cout << endl;     }

Output:

The position of 20 using lower_bound (in single occurrence case) : 2
The position of 20 using lower_bound (in multiple occurrence case) : 2
The position of 20 using lower_bound (in no occurrence case) : 2

3. upper_bound(start_ptr, end_ptr, num) : Returns pointer to “position of next higher number than num” if container contains 1 occurrence of num. Returns pointer to “first position of next higher number than last occurrence of num” if container contains multiple occurrence of num. Returns pointer to “position of next higher number than num” if container does not contain occurrence of num. Subtracting the pointer to 1st position i.e “vect.begin()” returns the actual index.

 // C++ code to demonstrate the working of upper_bound() #include  using namespace std;    int main() {     // initializing vector of integers     // for single occurrence     vector arr1 = {10, 15, 20, 25, 30, 35};            // initializing vector of integers     // for multiple occurrences     vector arr2 = {10, 15, 20, 20, 25, 30, 35};            // initializing vector of integers     // for no occurrence     vector arr3 = {10, 15, 25, 30, 35};                   // using upper_bound() to check if 20 exists     // single occurrence     // prints 3     cout << "The position of 20 using upper_bound"            " (in single occurrence case) : ";     cout << upper_bound(arr1.begin(), arr1.end(), 20)             - arr1.begin();             cout << endl;            // using upper_bound() to check if 20 exists     // multiple occurrence     // prints 4     cout << "The position of 20 using upper_bound "              "(in multiple occurrence case) : ";     cout << upper_bound(arr2.begin(), arr2.end(), 20)              - arr2.begin();             cout << endl;             // using upper_bound() to check if 20 exists     // no occurrence     // prints 2 ( index of next higher)     cout << "The position of 20 using upper_bound"             " (in no occurrence case) : ";     cout << upper_bound(arr3.begin(), arr3.end(), 20)             - arr3.begin();             cout << endl;     }

Output:

The position of 20 using upper_bound (in single occurrence case) : 3
The position of 20 using upper_bound (in multiple occurrence case) : 4
The position of 20 using upper_bound (in no occurrence case) : 2

This article is contributed by Manjeet Singh(HBD.N). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

My Personal Notes arrow_drop_up

Improved By : cchallenge2020

Article Tags :
Practice Tags :

11

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.