# Autocorrelation plot using Matplotlib

• Last Updated : 06 Aug, 2021

Autocorrelation plots are a commonly used tool for checking randomness in a data set. This randomness is ascertained by computing autocorrelations for data values at varying time lags.

Characteristics Of Autocorrelation Plot :

• It measures a set of current values against a set of past values and finds whether they correlate.
• It is the correlation of one-time series data to another time series data which has a time lag.
• It varies from +1 to -1.
• An autocorrelation of +1 indicates that if time series one increases in value the time series 2 also increases in proportion to the change in time series 1.
• An autocorrelation of -1 indicates that if time series one increases in value the time series 2 decreases in proportion to the change in time series 1.

Application of Autocorrelation:

• Pattern recognition.
• Signal detection.
• Signal processing.
• Estimating pitch.
• Technical analysis of stocks.

## Plotting the Autocorrelation Plot

To plot the Autocorrelation Plot we can use matplotlib and plot it easily by using matplotlib.pyplot.acorr() function.

Syntax: matplotlib.pyplot.acorr(x, *, data=None, **kwargs)
Parameters:

• ‘x’ : This parameter is a sequence of scalar.
• ‘detrend’ : This parameter is an optional parameter. Its default value is mlab.detrend_none.
• ‘normed’ : This parameter is also an optional parameter and contains the bool value. Its default value is True.
• ‘usevlines’ : This parameter is also an optional parameter and contains the bool value. Its default value is True.
• ‘maxlags’ : This parameter is also an optional parameter and contains the integer value. Its default value is 10.
• ‘linestyle’ : This parameter is also an optional parameter and used for plotting the data points, only when usevlines is False.
• ‘marker’ : This parameter is also an optional parameter and contains the string. Its default value is ‘o’.

Returns: (lags, c, line, b)
Where:

• lags are a length 2`maxlags+1 lag vector.
• c is the 2`maxlags+1 auto correlation vector.
• line is a Line2D instance returned by plot.
• b is the x-axis.

Example 1:

## Python3

 `# Importing the libraries.``import` `matplotlib.pyplot as plt``import` `numpy as np``  ` `# Data for which we plot Autocorrelation.``data ``=` `np.array([``12.0``, ``24.0``, ``7.``, ``20.0``,``                 ``7.0``, ``22.0``, ``18.0``,``22.0``,``                 ``6.0``, ``7.0``, ``20.0``, ``13.0``,``                 ``8.0``, ``5.0``, ``8``])``  ` `# Adding plot title.``plt.title(``"Autocorrelation Plot"``)` `# Providing x-axis name.``plt.xlabel(``"Lags"``)` `# Plotting the Autocorrelation plot.``plt.acorr(data, maxlags ``=` `10``)` `# Displaying the plot.``print``(``"The Autocorrelation plot for the data is:"``)``plt.grid(``True``)` `plt.show()`

Output: Example 2:

## Python3

 `# Importing the libraries.``import` `matplotlib.pyplot as plt``import` `numpy as np``  ` `# Setting up the rondom seed for``# fixing the random state.``np.random.seed(``42``)``  ` `# Creating some random data.``data ``=` `np.random.randn(``25``)``  ` `# Adding plot title.``plt.title(``"Autocorrelation Plot"``)` `# Providing x-axis name.``plt.xlabel(``"Lags"``)` `# Plotting the Autocorrelation plot.``plt.acorr(data, maxlags ``=` `20``)` `# Displaying the plot.``print``(``"The Autocorrelation plot for the data is:"``)``plt.grid(``True``)` `plt.show()`

Output: My Personal Notes arrow_drop_up