Given a number N, the task is to check if N is an Anti-perfectNumber or not. If N is an Anti-perfectNumber then print “Yes” else print “No”.
An anti-perfect Number is a number that is equal to the sum of the reverse of its proper divisors.
Examples:
Input: N = 244
Output: Yes
Explanation:
proper divisors of 24 are 1, 2, 4, 61, 122
sum of their reverse is 1 + 2 + 4 + 16 + 221 = 244 = N.
Input: N = 28
Output: No
Approach The idea is to find the sum of the reverse of the proper divisors of the number N and check if the sum if equals to N or not. If sum is equals to N, then N is an Anti-perfectNumber then print “Yes” else print “No”.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int rev( int num)
{
int rev_num = 0;
while (num > 0) {
rev_num = rev_num * 10
+ num % 10;
num = num / 10;
}
return rev_num;
}
int divSum( int num)
{
int result = 0;
for ( int i = 2; i <= sqrt (num); i++) {
if (num % i == 0) {
if (i == (num / i))
result += rev(i);
else
result += (rev(i)
+ rev(num / i));
}
}
return (result + 1);
}
bool isAntiPerfect( int n)
{
return divSum(n) == n;
}
int main()
{
int N = 244;
if (isAntiPerfect(N))
cout << "Yes" ;
else
cout << "No" ;
return 0;
}
|
Java
class GFG{
static int rev( int num)
{
int rev_num = 0 ;
while (num > 0 )
{
rev_num = rev_num * 10 +
num % 10 ;
num = num / 10 ;
}
return rev_num;
}
static int divSum( int num)
{
int result = 0 ;
for ( int i = 2 ; i <= Math.sqrt(num); i++)
{
if (num % i == 0 )
{
if (i == (num / i))
result += rev(i);
else
result += (rev(i) +
rev(num / i));
}
}
return (result + 1 );
}
static boolean isAntiPerfect( int n)
{
return divSum(n) == n;
}
public static void main (String[] args)
{
int N = 244 ;
if (isAntiPerfect(N))
System.out.print( "Yes" );
else
System.out.print( "No" );
}
}
|
Python3
def rev(num):
rev_num = 0
while (num > 0 ) :
rev_num = rev_num * 10 + num % 10
num = num / / 10
return rev_num
def divSum(num) :
result = 0
for i in range ( 2 , int (num * * 0.5 )):
if (num % i = = 0 ) :
if (i = = (num / i)):
result + = rev(i)
else :
result + = (rev(i) + rev(num / i))
return (result + 1 )
def isAntiPerfect(n):
return divSum(n) = = n
N = 244
if (isAntiPerfect(N)):
print ( "Yes" )
else :
print ( "No" )
|
C#
using System;
class GFG{
static int rev( int num)
{
int rev_num = 0;
while (num > 0)
{
rev_num = rev_num * 10 +
num % 10;
num = num / 10;
}
return rev_num;
}
static int divSum( int num)
{
int result = 0;
for ( int i = 2; i <= Math.Sqrt(num); i++)
{
if (num % i == 0)
{
if (i == (num / i))
result += rev(i);
else
result += (rev(i) +
rev(num / i));
}
}
return (result + 1);
}
static Boolean isAntiPerfect( int n)
{
return divSum(n) == n;
}
public static void Main (String[] args)
{
int N = 244;
if (isAntiPerfect(N))
Console.Write( "Yes" );
else
Console.Write( "No" );
}
}
|
Javascript
<script>
function rev(num)
{
var rev_num = 0;
while (num > 0) {
rev_num = rev_num * 10 + num % 10;
num = Math.floor(num / 10);
}
return rev_num;
}
function divSum(num)
{
var result = 0;
for ( var i = 2; i <= Math.floor(Math.sqrt(num)); i++) {
if (num % i == 0) {
if (i == (num / i))
result += rev(i);
else
result += (rev(i)
+ rev(num / i));
}
}
result += 1;
return result;
}
function isAntiPerfect(n)
{
return divSum(n) == n;
}
var N = 244;
if (isAntiPerfect(N))
document.write( "Yes" );
else
document.write( "No" );
</script>
|
Time Complexity: O(sqrt(N))
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!